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Abstract
In this paper, making use of the theory of partial differential inequalities, we will
investigate the boundary value problems for a class of singularly. perturbed second
order vector elliptic equations, and obtain the existence and asymptotic estimation of

solutions, involving the interior layer behavior, of the problems described above.
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I. Existence of Solutions of Boundary Value Problems for Elliptic Equation

With the aid of the theory of partial differential inequaﬁties; many authors have
investigated the boundary value problems of singularly perturbed scalar elliptic equations!'7.
However, the research for the vector elliptié boundary value problems is less to be seen. In
this paper, making use of the method in [8 —10}, we will intense the resnlts of scalar problems
to the vector elliptic boundary value problems (BVPs) as follows:

eAy.—f‘(x,y,vy.,e), x€EQcR" (1.1)
ys(x,8) =gi(x), x€E[=069Q, tEI-—{l 2, o, n} (1.2)

where £¢>0 is a small parameter, 2 is a bounded open domain in R™, and &2 is a sufficiently
smooth boundary.

For convenience, we assume that there exists a smooth function F(x) such that Q={x in
R® ; F(x)<0} and &@2={x in R™; F(x)=0}, wliere ViFf{x) #0, x on I" and VE (%) is an
outward normal to I*. Let J be a smooth closed curve properly contained in 2. We assume
that J is given by the equation @ (x)=0, where V& (x) # 0 along J. The curve J divides Q
into two nonempty, disjoint open subsets £2; and Q- such that Q=Q,U U J,and 2,={x in
Q2; P(x)<0} ‘and Q.={x in Q; @(Xx) >0}, and & be far away from I". For a given real
number a we set Je={x in Q; {x—J|<6}, The set J* is a band of widtn 2a surrounding
the curve J.

For the exposition, we shall take 2 to be a subset of R*. In J*, we use a local coordinate
system (r, z), where r(x)=d% |x—J|, r<0 for x in £,, r>0 for x in Q,, and where z(x) is the
arc length along J from some reference point to the point on J closest to x. Since AP don’t
vanish along J. By continuity, for some d>0 the Jacobian of transformation x—»n(r z) doesn’t
vanish in J¢. The coordinate trasformations are therefore bijective in J4 .
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In order to investigate the BVP (1.1), (1.2), we first consider the existence of solutions of

the BVPs as follows:
Ays=fi(%,y,vys), xEQCR" (1.3)
yi(x)=gi(x), €T, i€l (1.4)

Definition Let £ be a bounded, open set in R™, The functions a= (aj,':-,a,) and
B=(B1,,Ba) wWitha(x}<F(x)in 2 are called lower and upper solutions for the BVP
(1.3), (1.4), respectively. if

(1) a,PEC U Dy, R*], Dia(x)<<Dsa(x) and D,f(x) >D,.B(x) on J, where D, and
D, denote derivatives with respect to r from the negative r@,) side of J and the positive r(2:)
side of J, respectively;

(2) for each i€l and a;<<y;<Py, j+i, the following inequalities are correct:

Aa‘>f4 (x9y19 Tty Yi-19QisYt4ly e ,yﬂyva‘) ’ x€EH U S,
Aﬂl<fl (%541, ’y;;l 9ﬂhyi+l’ ey Yny Vi) ’xEQI U,

The principal tool we use in the study of the asymptotic behavior of solutions of the BVP
(1.1), (1.2) is a theorem on partial differential inequalities as follows:

Theorem 1 Suppose that in addition to the conditions on £ described above, the
following conditions hold: ’

(1) FfEC*QxR*"xXR™,R*], gECH*[8Q, R"], 0<u<lt, and f«(x, y, Vyi) (i€I)
are monotone nondecreasing in Y ;

(2) f satisfies a Nagumo condition, that is, there exists an increasing function ;s
R*->R* such that | f1(x,4,2) | << ¢ (Iyl) (1 4213 for all (x,y,2)ERQ x B*x R™y

(3) there exist lower and upper solutions @ and g relative to (1.3) which satisfy a; (x) <
gs(x) <Pi(x) ,x€0Q,i€1
Then there exists a solution y=y(x) EC*[Q,R*] of the BVP (1.3), (1.4) such that

as (%) <y (x) <Bu(x), a€B, i€l (1.5)
Proof Consider the modified nonlinear elliptic BVPs as follows:
Aye=F(%,y:,Vys) , x€Q (1.6)
yi(x)=gi(x), €I, i€l (1.7)
where
Fo(x,y1,Vys) =Fe(%, X1, 3 Xi_ 1,45, Xiery o, Xu, B (V) ) H6€EI, (1.8)

and xj(i?éi)ecl’l‘ [Q’ R], aj(x)<xl<ﬁl(x), x in Q.hGC‘[R",R"],h(y)=y for

lyi<<lN, (h(y) I<Aly| for y in R™, and h(R™), h,(R™) are bounded, whene k, denotes

the Jacobian matrix function of 4, A>1, N>max{N, maxie,(x)|, max|A,(xy{}, N
Q Q

being the Nagumo constant relative to a, fand ¥,(i€I) . Similar to the proof of the
corresponding theorems in [1] and [12], we may verify that theré exists a solution
y=y(x)€ C%» *[£), R*] of the problem (1.6), (1.7) such that alx) <y (x) <P (x) and
ly:(x) | <N, x im Q. Under the assumptions (1) — ( 3), making use of the monotone
iterative technique which is used in [11], we may similarly prove that the BVP (1.3), (1.4) has a
solution y=y(x)E€C*&, R*] satistying a(x)<<y(x) <P (x), x€Q . The details are
omitted.
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II. Estimation of Solutions of Interior Behavior for Singularly Perturbed
Problems

Next, we shall apply the previous Theorem and technique in [8]-[10] to investigate the
existence and asymptotic estimation of the solutions involving the discontinuously reduced
solutions of the BVP (1.1), (1.2). For brevity, we only discuss the case for n=m=2. Let (u, v)
be a solution pair of so-called reduced problems:

fi(x,u,0,94,0)=0, fi(x,8,0,Vv,0)=0, x€EQ (2.1)

Theorem 2 Suppose that in addition to the conditions on £ described above, the
following conditions hold:

(1) there exist solution pairs (u), v1) and (us, vs) of the reduced problem (2.1) such that
(w1, v) EC?[Q,, R*] and (12,02) EC?[R3,R?], and 6y (x) = g1 (x)and vz (x) = g (x) for x on
I, and ui(x) > u:(x) and vi(x)<v:(x) for x on J;

€2) fi(x, Yi,Y2, D1, P2,€) is assumed to be continuous in x and ¢, and continuously
differentiable in p\ and p, for all (X, Y1,Y2, D1, P2,6) €O | where

@={ (x,ylyyhpl ’pha) ’xeﬁ, lyl""u(x) l<dl (x) ’
Iyz—v(x) |<d2(x) ’ Ipll <°°’i= 1 y2’0<£<50}'!
e.>0is a small constant, ds(x) (i=1,2) are smooth positive functions: di(x)=u;(x) —
uy(x)+38 onJ, di(x)=38 in QT dy(x)=vs(x) —v1(x) 4+, x€J, da(x)=3 in Q—
Je, IP={x€0; |x—J|< }s
(3) there exist positive constants &y, m¢(i=1,2) such that

fai=he, i=1,2, |fipl<<mi, [foil<<m in@

@) (Fip »Frp) (x,81,01,V11,6) - V>0, x€J°NE,
(F1p1s F1p2) (%,82,02,Vk,6) - VD0, xEJ0 (1€,
(Fopry Faps) (x,81,01,V01,€) - VDP>0, x€EJ4 N0,
(Fapis Fapn) (%,82,05,V05,8) - VOO0, xE€EJINQ,,

(5) the vector fields (fips, f1p2) (%, 0, w1, Vi, €) and (fapssfape) (?C,ul,UuVUl,e)
do not vanish and change symbols in ), .and (Fiprs frip2) (X, 83, s, Vi, €) and
(fapis fops) (%,83,05,VUs,€)do not vanish ard change symbols in Q;;

(6) fs(i=1,2) satisfy Nawumo condirions:

(1) fr(x,u4,04,Vt4,6)=0(e) for x€8Q; , fi1(x,u5,05,V8i,6)=0(e) for xEQ,

Fo(x,u0,04,Vth,e)=0(e) tov x€EQ1 , [fa(x,u4,04,Vth,6) =0(e) tor x€L,

Then for ¢ sufficiently small there exists a solution y=y(x,e)=(y:(x,e), y2(x,8)) of the
BVP (1.1), (1.2) such that

4 (%) +&1(x,2) +0(e) (x€£1)
% (x,8)={

L (2.2)

s (x) +82(x,8) +0(e) (x€£2,)

v1(x) +x1(x,e) +0(e) (x€8,)

yz(x,8)={ (2.3)
v3(x) +x2{x,6) +0(e) (x€8,)
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where E,, and Xy (i=1, 2) are interior layer corrections to be determined.

Proof The main idea of the proof is to construct the lower and upper solutions as in
Theorem 1. We assume that for 8 properly small J? is completely contained in Q2. We know
from the assumption (5) that there exists a constant vector »= (¥1,%s) such that

(flpuflpz) (x,“"vyvuya)'v>l(<—'l), x€£2 (£2:)
| (2.4)
(flﬁuflﬁh) (x,“,_U,Vv,é’)'v>1(<"‘1)- xE‘Ql(QZ)

For notational ease, we set h(X)=v1%1-+v2%, so that v=VAh,
For y, we define a; and B as follows:

s (x) —9P1(x,e) —epexp[Ah(x)], x€L,

w1 (x) —E1(x,6) —ga(x,¢) —epexp[Ah(x)], x€Q,
1y (%) +Ea(x,8) +¢1(x,¢) +epexp[Ah(x)], xE€8,

#1(x) +P2(x,€) +eyexp[Ah(x)], €L,

ai (x,e)={
ﬂx(X,€)={

where ¥ is a positive constant to be determined, and A>max{m,m.}, and $1(x,&)=0® (r)
Pi(r, &), x€J* for 0r<8,P1(x,e)=0, x€E2,—J%and F:(x,e) = (r)¢s(x,e), x€J*¢
for —8<r<0, #2(x,8)=0, x€02,—J?  where @(r) is a C?*cut-off function such that
®(r)=1 for |r|<38/4, ®(r)=0 for |r|>48/5 and 0D for |r|<d, and where
#i(i=1,2) are positive functions to be determined which satisfy $s=0(e) and ¢;,=0(1)
>0, Ei(x, &)=w(r)li(r, &), x€J® for 0<r<d,and Ei1(x, &)=0, x€EQ,—J¢, and
Eu(x,6)=0(r) & (r,e) ,xE€EJ® for —3<r<<0 and E.(x,£)==0, x€Q1—J°%  where @ (r)
is a C%cut-off function such that w(r)=1 for [r|</2, @(r)=0 for |r|>>338/4 and
0<o<<) for |r|<C8, and where & (i=1,2) satisfy

(‘BClrr—Ilcl‘I': —’{lclr’
"£1(0,e)=max (4,(0,2) —42(0,2)),£:.>0
\ §19(0,8)>0,1_i_>m£1,(0,8)=oc (2.5)

\ £1—>0 exponentially as ¢->0 for r<0
(Elapr +1lop=1t:85r
gz(O,G) =ma}_((ul(0,2) —'“2(052))9 £2>0

ﬁ £Zr<0, limCz,(O,S) = — 00 (2 . 6)
a=>0

\ {2—>0 exponentially as e->0 for r>0

where J;(i=1,2)are positive constants which are selected from (4), (5) and satisfy (f1ps,f1ps)
(%,8,0,V4,¢) - (0t/0%1, 0t/9x:) 2N (K~ 1), x€EJ°NL,(J°N @,), and (faprs faps) (%,u,v,
Vu, &) (At/9x;, 9t/0x:) =1 (L —~15), €T N (T4 ND,), #(i=1,2) are small positive
constants that is less than ;.

It is clear from the construction of @1 and f: that a(x,&) <Bi(x,e)in Q , and that
a1(x) <g1(x) <P (x,¢e) on I' . The function a1 and B are clearly not of class C* on all of
€2 since these functions have discontinuous gradients across the curve J. However, along J we
have
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Dlal (0,2,8) =Dwm, (052) —-§1r(0,8) +O(B)
<Dus(0,2) +0 (&) =Dra1 (0, 2,e) (2.7)
and
D.B1(0,2,6) =Dw1(0,2) +0(e)
>Dru2(0’z) +§2r(0,5) +O(£) =D,ﬂ1(0,2,8) (2 . 8)
for & sufficiently small. Thus @1 and ‘B, satisfy the appropriate differential inequalities along
.
Now, we verify that @1 and P are lower and upper solutions of the problem (1.1) in

1 U 9, . Similar to the proof in-Kelley!®, we suppose that y, satisfies -

vy (%) — X (%,¢) —eyexplAh(x) ] -0 (e) <2

<vi(x) +epexp[Ah(x)14+0(e), x€Q, (2.9)
vy (x) —epexp[Ah(x)] —0(e) <y
<vi(x) + 72 (x,e) +eyexplAh(x) 140 (e), xEL (2.10)

where O(e) (C>0) is independent of A4, y and X satisfies the equations which {4 satifies
instead of X1(0, &)==max(v,(0, 2)—v1 (0, 2)) in (2.5), and X2(0,e)=max(v:(0,2)
—0,(0,2)) in (2.6).
Now, let us first prove that @i is a lower solution in £2-—J%/*_ In this case,
¢'5=§;=Z‘='0 (i=1,2), that is
ai(x,e) =u(x) —eyexpl[ih(x)] (x€Q—T%%) (2.11)
v(x) —epexp[Ah(x)] —O0(e) <y (x) +eyexp[Ah(x) 1 +0(e),

. x€Q T3t (2.12)
Since Au= [f':“"i“ ":'“]un'f" [Z:“'*"Ziz]uzz"i'[Txlxz‘*'fxzxz]ur"l'[Zx1x1+2xzxz]“z and rx,+ra
=1and Vr-Vz=0 . Let A= (rxx,+7xx:), by the Mean Value Theorem we have

eAa, "‘fl (x,alyyz’valye)
>elAu —e*pAexp[Ah(x)] —f1(x,u,v,Vu,e) +kiepexp[Ah(x)]
—mepexplAh(x) 1 +eplexp[Ah(x)14+0(e)

Sep (ki +A—m)explAh(x)]+0(e) +O(c) (2.13)
where O(g) is independent of A, ¥. Hence for A>>m—£k,, and y large enough and ¢ sufficiently
small we know that (2.13) is larger than or equal to zero. It remains to verify that a; and B1
satisfy the appropriate differential inequalities in J%#/4—J.

Next, consider the function a; in J%2NQ, , we have

eAar—fi1(x,a1,Y:,Va1,¢)
=eAty —e1ep — eAP1, —~pAXDP[AR(%) ] — f1(%, 85,02, VH5,e)
+FR1 (1 +eyexplAh(x) 1) —mi (X1 +epexp[Ah(x)])
+layi.+eplexp[An(x) ] +0(e)
> — (eY1pe —loprs +miXy) +£'y(k1+/'l—-m1)ekp[/1h(x) 14+0(e) +0(e?) (2.14)

We define ¢, as follows:

¥1(r,e) =8I:NGXP[Izr]Ijexp[ —LsIm X (s,e)dsdr (0<r<d) (2.15)
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It is easy to prove from the definition of ¢ and Fubini-Tonelli Theorem that ¢; satisfies
Ep1er — Iz!blr + mX=0, and Y1, ¢1P>0 and ¢1=O(8)9 ¢lr=o(1)>0 . Hence, fOTY
large enough and ¢ sufficiently small we have (2.14) which is larger than or equal to zero.

In J&*Q, , from the condition (2.5) and the Mean Value Theorem we have

eAai—f1(x,a1,Y2,Va1,€) ,
= —Eglrr—SAﬁl} —ePspet ki ({1 4P +epexp[Ah(x)])
—my (Xy+epexplAk(x) 1)+ (L1rter)
+eldyexp[Ah(x)14+0(e) +O(e?)
Piilir—eAlir— (s —l1har+miXs)
+epkiexp(Ah(x)1+0(e) +0(e?) (2.16)

where we define
r/8 0
P (r,e) =€I_mexp[11‘t']J.T expl —lisImX,(s,e)dsdr ( —0<r<0)

and note that ¥, satisfies the equation epeps —I1%h2o+miX2=0 . Also, one can use the Fubini-
Tonelli Theorem to show that since X3€L;(0,00), $:+EL1[0,00) and $.=0(¢) . Also,
note that ¢, and %2+ are nonnegative. Since the positive term #£1» is dominant in (2.16) in
the interior layer and epkieXp[4h(x)] is dominant in (2.16) in the outer layer, it is enough
to show that (2.16) is nonnegative by choosing a sufficiently large’y and small enough «.

Now, consider the intermediate interval J3%¢_Jé2  Since Z¢ and X+ are
transcendentally small terms as &->0 , similar to the previous calculations, we can prove that
a, satisfies the requisited inequalities. The details are omitted.

The next step is to show that B is an upper solution for y, in £,U ;. Using a
calculation much like the previous proof for @i, by choosing a large value of y and a
sufficiently small value of &, we can show that eAB —f1(x,B1,Y2,VP1,¢) is less than or equal
to zero in 2, U §2s.

Finally, we construct upper and lower solutions for y, in Q, subject to

u(x) —eyexp[ih(x)]—O(e) <y

ua (%) +Ea(x)e) +epexplAh(x)1+0(e)  (x€Q,) (2.17)
ui(x) —Zi(x,e) —gyexplAh(x)] —-O(e) <.
<t (x) +eyexplAh(x)]+0(e) (x€82)) (2.18)

Let
v (%) =T1(x,€) ~Fs(x,¢) —eyexp[Ah(x)] (x€8%)

2( ’ )= -
nine {vl(x) —P.(x,6) —eyexp[Aih(x)] (x€82))

) {v,(x)+¢3(x,§)+e'yexp[}.h(x)] (x€8:)
Prlx,e)= v1(%) + 22 (x;6) +F o (x,) +evexplAh(x)1, x€F,

where the O(e) term is independent of y, and $ and $4 are smooth positive O(e) functions of
the form:
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Bs(x6) =%y (€1NQ)y Fym0,  (xED—T)

y 2.19
s (r,e) = sj exp[lzr]‘[ exp[—lzs]mzCz(s e)dsdr (0r<Co) (2.19)

El(x,3)=5¢’4« '(xEJOan); ’74= (xE.Q1—J‘)

S ffre (0 (2,20)
pu(rse) ﬁ!ef~.,stzexp[lxr]'J exp[ —lis]mli(s,e)dsdr  (—3<r<0) '

The verlﬁcatlon aizand. f. satlsty the: reqursxted relationships in Theorem..1 for ¢
sufﬁcxently small:is: tolthe previous’ proof for @y, P1. The details will be omitted.
Put everythmg ogether we can conclude' that there exists a solution y=y(x,e) of the
) problem (1.1), (1:2)such: that (2 2) and (2,3) are correct. This completes the proof of Theorem
2
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