
Applied Mathematics and Mechanics 
(English Edition, Vol. 16, No. 5, May 1995) 

Published by SU, 
Shanghai, China 

INTERIOR LAYER BEHAVIOR OF BOUNDARY VALUE PROBLEMS FOR 

SECOND ORDER-VECTOR EQUATION OF. ELLIPTIC TYPE 

Xu Yt~-xing ( ~ t ~ )  Zhang Xiang ( ~  ~-) 

(Anhui Normal University, Wuhu 241000, P. R. China) 

(Received July 4, 1994; Communicated by-Lin Zong-chi) 

Abstract. 
In this paper,making use of the theory of partial differential inequalities, we will 

investigate the boundary value problems for a class of singularly perturbed second 

order vector elliptic equations, and obtain the existence and asymptotic estimation of 

solutions, involving the interior layer behavior, of the problems described above. 
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I. Ex i s t ence  o f  So lu t ions  o f  BOundary Value  Problems  for Elliptic Equat ion  

With the aid of the theory of partial clifferential inequafities; many authors have 
investigated the boundary value .problems .o'f singularly-perturbed scalar elliptic equations 0-71. 

However, the research for the vector elliptic boundar3~ value problems is less to be seen. In 

this paper, making use of the method in [8 -10], we will: intense the ragnlts of scalar problems 

to the vector elliptic boundary value problems (BVPs) .as follows: 

e A y ~ f  f ,  ( x , y , . V y ~ , e ) ,  x E I 2 ~ R "  (1 .1 )  

y, (x,e) = o, (x) ,  xEF== Or2, ~EI= { l ,  z , . . . ,n~ ( l .  2) 

where e>0  is a small parameter,12 is a bounded open domain in .1~, and ~ is a sufficiently 

smooth boundary. 
For convenience, we assume that there exists a smooth function F(x) such that I2 = {x in 

R "  ; F(x)<0} and c~Q={x in Rm; F(x)=O}, where V-a~(aa) 4:~, X on /" and V;F.(.~0 is an 

outward normal to / - ' .  Let J be a smooth closed curve properly contained in I2. We assume 

that J is given by the equation ~ ( x ) = 0 ,  where V~I~(~t)v~D along J. The curve J divides s 

into two nonempty, disjoint open subsets g2~ and 02 such that I2=K211.J Qs 13 I ,  and s = {x in 
g-2; ~ ( x ) < 0 }  and  12,={x in g2;. @(x)>0} ,  and Qt he far away from f t .  For a given real 

number a we set J~ in ~s  ~x'-'.tl.~aL The set ,/'a is a band of wfdt~ ~2a surrounding 

the curve J. 
For the exposition; we shall take t2 to 16e a subset of R ~. In $'~, we use alocal  coordinate 

system (r, z), Where r(x)ffii+ I x - Y  I, r < 0  for x in g2t, r > 0  for x in I22,' and where z(x) is the 

arc length along J from some relerence point to the point on J closest to x. Since A ~  don't 

vanish along J. By continuity, for some d> 0 the Jacobian of tran.sformation Jc~-i~(r, z) doesn't 

vanish in I d. The coordinate trasformations are therefore bijective in ,.J'a 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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In order to investigate the BVP (1.1), (1.2), we first consider the existence of solutions of 

the BVPs as follows: 

A V , = I , ( x , v , V v , ) ,  x E ~ c R  = (1.3) 
v , ( x ) = a , ( x ) ,  x E F ,  i E I  (t.4) 

D e f i n i t i o n  Let s be a bounded, open set in R =, The functions a =  ( a l , ' . . , a n )  and 

f l=( f l l , . . . , f l~)wi tha(x)~f l (x ) in  ~ are called lower and upper solutions for the BVP 
(1.3), (1.4), respectively, if 

(1) a,flECl[~l U ~z,R'a], Dza(x) <Dia(x)  and Dzfl(x) >>~D,fl(x) on J, where D~ and 
Dr denote derivatives with respect to r from the negative r (~ )  side of J and the positive r(Y2.,) 
side ot ~ J, respectively; 

(2) for each iEI and aj<~.W<~.fl~ , idol, the following inequalities are correct: 

Aa ,~ f , ( x , y l , . . .  ,y,-l,a~,yi+t, "" ,y , ,Va,)  , xEDl U ~z 

A B , < / ,  ( x , w  , ... ,v'/-~ ,fl, ,v,§ , "" , v , ,  Vfl,) ,xEY2~ U ;2~ 

The principal tool we use in the study of  the asymptotic behavior of solutions of the BVP 

(1.1), (1.2) is a Iheorem on partial differential inequalities as follows: 

T h e o r e m  1 Suppose that in addition to the conditions on .Q described above, the 
following conditions hold: 

(1) ] E C ' [ ~ X R n x R ' , R n ] ,  gECt,~'[aD, R"], 0 < # < 1 ,  and f~(x, y,  VY,) (iEI) 
are monotone nondecreasing in y~; 

(2) f satisfies a Nagumo condition, that is, there exists an increasing function r 
R§ + such that I f , ( x , y , z )  I ~  #~(~y~) (1 + ]]z[ ~) for all (x ,y ,z)E~,  x R n • R=~ 

(3) there exist lower and upper solutions a and fl relative to (1.3) which satisfy a~ (x) 
g, (x) <..%8, (x) , x E a ~ , i ~ I . -  

Then there exists a solution y=y(x)ECZ[~. ,R "] of the BVP (1.3), (1.4) such that 

a~(x)<~y,(x)<..~J3,(x), a~Q, iEI (1.5) 

P r o o f  Consider the modified nonlinear elliptic BVPs as follows: 

A y , = F , ( x , y , , V y , ) ,  xE~ (1.6) 

y~(x)=g,(x) ,  XEF, iEI (1 .7)  

where 

F~(x,yl ,  Vyt) ---- f ~ (x,Xt ,  ... ,Xi_t,y~,Xl+, , ... ,X , ,h  (vy~) ) , iEI , (1.8)  

and X~(y~i)ECI, ~ [ ~ ,  R ] ,  a ~ ( x ) ~ X j ~ . . ~ ( x ) ,  x in f~.hECtm~,12m],t t(y)=y for 

gyN</V, |~r(u) I<~|Yll for y in R ~, and h(R m) , hr(R ~) are bounded, whene h F denotes 
the Jacobian matrix function of h, ,t~>1, _ N > r n l t x { l g ,  ma._x|--,,(x). [1, max]]fl,Cx~._ n }, 

being the N a g u m o  constant relative to a ,  r a n d  gtt(iEI ) . Similar to the proof of the 

corresponding theorems in [1] and [12], we may verify mat  there exists a solution 

y '=y(x)E C ~, ~ ' [~ ,  R '~] o f  the problem (1.6), (1.7) such that a ( . ~ t ~ < y ( x ' ) ~ : ( x ) a n d  

][y.(x) [ [~N' ,  x Jim ~ .  Under the assumptions ( 1 )  - ( 3 ) ,  making use of  the monotone 

iterative technique which is used in [11], we may similarly prove that the BVP (1.3), (1.4) has a 

solution y==y(x)EC~'[~, R ' ]  satisfying a ( x ) ~ y ( x )  <~fl(x), xE~, The details are 
omitted. 
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II. E s t i m a t i o n  of  So lu t ions  o f  Inter ior  Behav ior  for S ingular ly  Perturbed 

Pr ob l e ms  

Next, we shall apply the previous Theorem and tec.hnique in [8]-[10] to investigate the 

existence and asymptotic estimation of the solutions involving the discontinuously reduced 
solutions of the BVP (I.1), (1.2). For brevity, we only discuss the case for n----m=2. Let (u, v) 
be a solution pair of so-called reduced problems: 

f~(x,u,v,Vu,o)=o, /~(x,a,v,Vv,O)=O, x ~  (2.~) 
T h e o r e m  9. Suppose that in addition to the conditions on 12 described above, the 

following conditions hold: 
(1) there exist solution pairs (m, v~) and (m, v~) of the reduced problem (2.1) such that 

(ut, v~)~C~[~x, R z] and (uz,v~)~CZ[~z,RZ], and u,.(x)=yt(X)andv~(x)=gz(x) for x on 

/-', and ut(x)> u.,(x) and v,(x)<w.(x) for x on J; 
~2) f~(x, 9t,~,p~,pz,e) is assumed to be continuous in x and e, and continuously 

differentiable in p~ and p: for all (x, .y~ ,Yz, Pt ,  P~-,e) CO, where 

O= { (x,th ,Vs, P~ , p~,e) ,x~O, , IVt--u (x) I<d~ (x) ,  

]y~-v(x) I ~<dz (x) ,  I Ptl < o o , i =  1 , 2 , o ~ e ~ e o } ,  

e , ~ 0  is a small constant, dt(x) ( i = 1 , 2 )  are smoo:h positive functions: d~(x)=u~(x)- 
uz(x)+c3 on J ,  d l ( x ) = 3  in ~--I6~ d~.(x)=v~(x)-v~(x)+c3, x~ l ,  

l~, l~=~x~t2~ Ix-ll<~ 3}~ 
(3) there exist positive constants k~,m~(i= 1,2) such that 

/~ ,~k , ,  i=1,2,  Ilt~,zl<ml, If~,~l<mz in O 

do 

(/~p,,f~p~) (x,u~,vz,Vv,.,e)do not vanish ar.d change symbols in 12_,; 

(6) f~(i= 1,2) satisfy N,~zumo condjrAons: 
(7) fl(x,u~,vt,Vu~,e)----O(e) for xEOl , f l(x,ui ,vt ,vul ,e)=O(e) for xE$-22 

/,(x,u~,v,,Vu,,e)=O(e) to, xED1 , fz(x,u~,m,Vu,,e)=O(e) for xfz~,h 

Then for e sufficiently small there exists a solution 9=y(x ,e )=(y t (x , e ) ,  y,(x,e)) 
BVP (1.1), (1.2) such that 

d~(x)=~ in ~ - -  

(4) (flp, ,f,p,) ( x ,ux ,v l ,Vu l ,e ) -V~O,  xEl'~fl~.l 

(f,p,,/lp,) (x,u~,w_,Vu~,e) .Vq~<O, xElafl ~.~ 
(/~p,,/~p,) (x, u t, ol,Vo~, e). V ~ >  o, xEl ~ fl ~ 
(/~p,,/,p,) (x,u,,v~,Vv~,e) .V~<O, xEl ~ 13 ~ ,  

(5) the vector fields ( / lpl ,  flp2) (x, ul, vl,  Vul, e) and ([~p1,f~p,) (x,ul,vl,Vvl,e) 
not-vanish and change symbols in 12~, .and (f tp, ,  flpz)(x, u~.,'vs, Vu~, e)and 

yl(x,e)=C l(x)+~(x'e)+O(e) 
.~(x)+L(x,e)+O(e) 

(xE.O0 

(xE.O.) 

(xE~d 

.vt (x) + . ~  (x,e) +O(e)  

Y~(x'e)--{v~(x) +;r~(x,e) +O(e)  

of the 

(2.2) 

(2.3) 
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where ~.  and Z~ (i= 1, 2) are interior layer corrections to be determined. 

P r o o f  The main idea of the proof is to construct the lower and upper solutions as in 

Theorem 1. We assume that for ~ properly small In is completely contained in 1"2. We know 

from the assumption (5) that there exists a constant vector v =  (v~,v~) such that 

(fxpa,fxp,) (x ,u ,v ,Vu,e)  "v> 1 ( < - -  1), xE$-2, (,Q~) 

(f,p,,/,p,) (x,u,r,,vv,e) .v>: ( < -  ~). xGO, GOt) 

For notational ease, we set h (x)=v~x~+vtxa, So that v = v h .  
For//~ we define a, and ,81 as follows: 

(2.4) 

ut(x) - - ~ ( x , e )  - evexp[2h(x )  3, xGOt 
m(x,e)={ 

u~(x) - ~ : ( x , e )  - r  - evexp[2h(x )  ], xEO., 

where ? is a positive constant to be determined, and ~.>max{ml,m~}, and ~b:(x,e)=~a(r) 
Ol(r, e), xE,! ''J for O~r~c3,~a (x,e)--  O, xEO~-]5  and ~ ( x , e )  = ff~ (r)~pz(x,e), xEl  'y 
for - c 3 ~ r ~ 0 ,  f f t ( x , e ) = 0 ,  xEg21-J "'I , where ~ ( r ) '  is a Ct-cut-off function such that 

~ ( r ) = l  for [rl~3c~/4, ~ ( r ) = 0  for Ir[~4c3/5 and 0 ~ 1  for Irl-~<c~ and where 

~&(i=l ,2)  are positive functions to be determined which sat isfy~,=O(e)and~b; ,=O(1)  
> 0 ,  ~ ( x ,  e)=co(r)~t(r, e), x~.l ~ for 0 ~ r ~ c 3 , a n d  ~:(x ,  e ) = 0 ,  xE$2~-J e ,  and 

~ ( x , e ) = c o ( r ) ~ ( r , e ) , x E ]  ~ for - $ ~ r ~ 0  and ~z(x,e)=O, xGgJ:-.I ~, where ~ ( r )  

is a Ct-cut-off function such that co ( r )= l  for Irl~$/.2, co(r)=0 for 1r1~33/4 and 

0~co~l!  for I r l ~ ,  and where ~ ( i =  1,2) satisfy 

{ e~lt,-- I1~1,= --/r 

C, (0,e) = m a x  (ut (0,2) -- u2 (0 ,2 ) ) ,  ~1> 0 

~l,(O,e) >O,lims =e~ 

~l-->0 exponentially as e--~0 for r < 0  

Cz (O,e)=max (u, (0,2)--ut (0,2)), Cz>0 

= - o o  

~ 0  exponentially as e ~ 0  for r > 0  

(2.5) 

(2.6) 

where I~(i=l,2)are positive constants which are selected from (4), (5)and satisfy(flpl ,f lp,)  
(x ,n ,v ,Vu ,e ) .  (Ot/o~xl, tgt/dxz) ~11 ( ~ - I ~ ) ,  xEl  8 Iq ~1 ( l  6 lq ~ ) ,  and (f2pl, f~p,) (x ,u ,v ,  
Vv,  e) �9 (cgt/Oxa, dt/dxz) ~ It ( ~ - - L . ) ,  x E l  8 I-I ~ :  ( I  ~ fl ~Qt), fq ( i=  1,2) are small positive 
constants that is less than l~. 

It is clear from the construction of al and ill that al(x,e)<.~fll(x,e) in ~ , and that 

ax (x) ~ga (x) <-~fli (x,e) on ]-'. The function al  and fll are clearly not of class C z on all of 

I2 since these functions have discontinuous gradients across the curve J. However, along J we 
have 
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and 

Dta~ (O,z,e) =D,u~ (O,z) - ~ ,  (O,e) +O(e) 
< D,u~ (0, z) '+ 0 (e) = D,a~ (0, z ,  e) (2.v) 

D ~  ( O,z,e) = D~u~ ( O,z) + 0  (e) 
>D,u~ tO,z) "[-~, to,e) q-O t e) =D,t~I tO,z,e) (2.8)  

a i  and 'ill satisfy the appropriate differential inequalities along for e sufficiently small. Thus 

J. 
Now, we verify that a~ and fl~ are lower and upper solutions of the problem (1.I) in 

~Q1 I.I ~Q,. Similar to the proof in~ Kelley t81, we suppose that Yz satisfies 

v~ (x) --j~ (x,  e) -- e v e x p  [2h (x) ] - O (e) ~--<.y~ 

<~v~(x) +evexp[2h(x ) ] +O(e), x~Oz (2 .9)  

v~ (x) - - e v e x p  [2h (x) ] - O ( e )  ~<~r 

<~vt (x) +-2~(x,e) +evexp[2h(x) ] +O(e), x~D~ (2. i0) 

where O(e)  ( ~ 0 )  is independent of ;t, ~ and X~ satisfies the equations which ~ satifies 
instead of x~(o,e)=max(v~(o, z)-V~ (0, z)) in (2.5), and Xz(O,e)=max(vz(o,z) 
--vl(O,z)) in (2.6). 

Now, let us first prove that a~ is a lower solution in O--]  z6~4 . In this case, 

f f ~ = ~ = Z ~ , 0  ( i =  1,2),  that is 

al(x,e)=u(x)  -eeoxp[Xh(x)] ( xEO-d  s~ (2.11) 

v (x) - - e v e x p  [ ;th (x) ] - 0 (e) %Y2~V (x) + e v e x p  [Xh (x) ] + 0  (e), 
xE~Q __fast4 (2.12)  

Since Au=[r~ q-r~,Ju,,q- [z~,q-z~]u~zq-[rx,x~-I-rx,x~]u,-I-[zx,x,q-Zx,x,]U~ and rx,+rx~ 

= 1 and V r ' V z = 0 .  Let 1 / =  (rxlx~+rx~xz), by the Mean Value Theorem we have 

eater -- f l t x,al ,Yz, Vat ,e) 
) eAu  - - s  [2h (x) ] - f l  (x,u,v,  Vu,e) +kievexp[,lh (x) ] 

-mle]aexp[2h(x) ] + e v X e x p [ 2 h  (x) ] + O ( e )  

) e ? ,  (k~ -t-2 - m r )  e x p  [2h (x) ] -I-O (e) + O ( e  z) (2.13) 

where O(e)  is independent of 2, ~'. Hence for 2~rnl-kl, and ~, large enough and e sufficiently 
small we know that (2.13) is larger than or equal to zero. It remains to verify that a~ and/fl~ 
satisfy the appropriate differential inequalities in jrsas4_].  

Next, consider the function a~ in ]'8~z fl -Q: , we have 

eAal - f l (x,al ,Y~, Val ,e) 
=eAuz- -  e lb l , , -  eAr (x) ] - f x  (x,uz,v2,Vu2,e)  

+ hi (t0~ +er ,  e x p  [/~h (x) ] ) - rn~ (Xt + e p e x p  [ 2h (x) ] ) 

+h.r (x) ] +O(e) 

~ - -  (efgl,,--l~f)l+Wmlgl) +ev(k t+~-ml)exp[2h(x)  ] + O ( e )  + O ( e  2) (2 .14)  

We define ~b~ as follows: 

~2,(r,e)=e~:"exp[12r]f?exp[-l~s]m,X~(s,e)dsdv (O~r~c3) (2.15)  
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Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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It is easy to prove from the definition of ~t and Fubini-Tonelli Theorem that ~bt satisfies 

e~t,, - lz~l, + mtxt--o, and ~t, ~ t r > 0  and lbl-----O(e), ~ l r = O ( 1 ) > 0  . Hence, for~, 
large enough and e sufficiently small we have (2.14) which is larger than or equal to zero. 

In J'm/t r i,Qt , from the condition (2.5) and the Mean Value Theorem we have 

eAat - f t ( x,at ,lh, Vat ,e) 
>f -e~l , ,  -eASt ,  - e ~ t , ,  + kt (~t +~p~ + e ~ e x p  [ 2h (x) ] ) 

--mx (Xt+evexp[,~h(x) ]) + l t  (~ te+r  

+eAeexp[ ;th(x) ] +O('e) +O(e ~) 

~ t C t , . -  e A ~ t ,  - ( e l b a , ,  - -  l t~bt ,  + m l X z )  

+e'ektexp[Ah (x) ] + O ( e )  + O ( e  ~) (2.16) 
where we define 

q)t(r,e) e~'"" o ---- e x p [ l l r ] f  e x p [  -lts]mtX,,(s,e)dsdr 

arid note that Ip2 satisfies the equation e'#;z,.,,--ll~b2,,+mtX2=O . Also, one can use the Fubini- 

Tonelli Theorem to show that since X2ELt(o,oo), ~z ,ELt [0 ,oo )  and ~b2----O(e) . Also, 

note that Tp2 and ~#~, are nonnegative. Since the positive term titbit, is dominant in (2.16) in 

the interior layer and eyktexp[2h(x)] is dominant in (2.16) in the outer layer, it is enough 

to show that (2.16) is nonnegative by choosing a sufficiently large'y and small enough e. 

Now, consider the intermediate interval d-sst~_j'~/2 . Since ~ and Xq are 

transcendentally small terms as e---~0 , similar to the previous calculations, we can prove that 
a~ satisfies the requisited inequalities. The details'are omitted. 

The next step is to shbw that fit is an upper solution for /r in -Q~ UO2. Using a 
calculation much like the previous proof for a t ,  by choosing a large value of y and a 

sufficiently small value of  e, we can show that eAfl~--flt(x,flttVz,Vflt,e) is less than or equal 
to zero in -Ql U s 

Finally, we construct upper and lower solutions for/12 in-(2, subject to 

Let 

u2 (x) -- e v e x p  [ 2h (x) ] - O (e) ~--<,Vt 

<~u~(x) +~,~(x)e) +evexp[ 2h(x) ] +O(e) 
ut (x) .-'gt (x,e) -r  (x) ] - O ( e )  %y~ 

<~..,ut (x) +e))exp[2h(x) ] + O ( e )  (xEI-21) 

(xE,O~) (2. t T) 

(2.t8) 

az(x ,e )=(  v~ . ( x ) -~ t ( x , e ) - f f s (X ,e ) -eyexp[ah(x ) ]  (xEO~) 

vl(x) - # ' ,  (x ,e)  -eyexp[,~h(x)] ( x E ~ t )  

v2(x) +ffs (x,e) +eyexpf;th(x) ] (xEt-2z) r 
1 

k vt(x) +evexp[  2h(x) !, xEO, i 

where the O(e) term is independent ofv,  and ffs and if4 are smooth positive O(e) functions of  
the form: 
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respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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i~,(x,e)=~r (xEZ'nO,),, iL=0. ( x E ~ - l ~ )  
�9 r,;,,: " ' i,d " (2 19) 

r  eJo eXp[l,'r]J exp[-l,s]m=r (o<.r~a) " 

iL(x,e)--ea,b, .  , (xff.r'N~=)~ ,7,=0 ( x f f ~ ' , r ' )  
r/'*, . to (2.20) 

{ ~ , ( r ,~)  ----e.[ / :oxp[llr][  e x p [ - l , s ] m t C l ( s , e ) d s d r  ( - 8 ~ r ~ 0 )  

..T:he (,erificati0n :::tta'at.,, ai  }and ./~r..satisty the: reqtiisited relationships in Theorem. 1 for e 
sufficiently small:is simiia :tothe previous'proof for a,;  fl,. The details will be omitted. 

Put.everything:~i:~{bge{her, we  can conclude that there exists a solution b ,=9(x ,e)  of the 
. problem (,1.1),.(l:~2)~Siieh:that.(2.2) and (2:3) are correct. Thiscompletes the proof of Theorem 
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