Articles

Scaling laws of compressible turbulence

Expand
  • Department of Mechanical Engineering, Cape Peninsula University of Technology, Cape Town 7535, South Africa

Received date: 2016-05-30

  Revised date: 2017-01-05

  Online published: 2017-06-01

Supported by

Project supported by the National Research Foundation of South Africa (No. 93918)

Abstract

Spatial scaling laws of velocity kinetic energy spectra for the compressible turbulence flow and the density-weighted counterparts are formulated in terms of the wavenumber, dissipation rate, and Mach number by using a dimensional analysis. We apply the Barenblatt's incomplete similarity theory to both kinetic and density-weighted energy spectra. It shows that, within the initial subrange, both energy spectra approach the -5/3 and -2 power laws of the wavenumber when the Mach number tends to unity and infinity, respectively.

Cite this article

Bohua SUN . Scaling laws of compressible turbulence[J]. Applied Mathematics and Mechanics, 2017 , 38(6) : 765 -778 . DOI: 10.1007/s10483-017-2204-8

References

[1] Kritsuk, A. G., Norman, M. L., Padoan, P., andWagner, R. The statistics of supersonic isothermal turbulence. The Astrophysical Journal, 665, 416-431 (2007)
[2] Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge (2008)
[3] Lee, C. B. and Wu, J. Z. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802 (2008)
[4] She, Z. S., Chen, X., Wu, Y., and Hussain, F. New perspective in statistical modeling of wallbounded turbulence. Acta Mechanica Sinica, 26, 847-861 (2010)
[5] Zhang, Y. S., Bi, W. T., Hussain, F., Li, X. L., and She, Z. S. Mach-number-invariant meanvelocity profile of compressible turbulent boundary layers. Physical Review Letters, 109, 054502 (2012)
[6] Zhou, H. and Zhang, H. X. What is the essence of the so-called century lasting difficult problem in classic physics, the “problem of turbulence”? Scienta Sinica: Physica, Mechanica and Astronomica, 42, 1-5 (2012)
[7] Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. T., and Chen, S. Cascade of kinetic energy in three-dimensional compressible turbulence. Physical Review Letters, 110, 214505 (2013)
[8] Chen, S. Y., Xia, Z. H., Wang, J. C., and Yang, Y. T. Recent progress in compressible turbulence. Acta Mechanica Sinica, 31, 275-291 (2015)
[9] Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings of the Royal Society of London, 434, 9-13 (1991)
[10] Kolmogorov, A. N. On degeneration (decay) of isotropic turbulence in an incompressible visous liquid. Doklady Akademii Nauk SSSR, 31, 538-540 (1941)
[11] Kolmogorov, A. N. Dissipation of energy in locally isotropic turbulence. Proceedings of the Royal Society of London, 434, 15-17 (1991)
[12] Aluie, H. Compressible turbulence: the cascade and its locality. Physical Review Letters, 106, 174502 (2011)
[13] Aluie, H., Li, S., and Li, H. Conservative cascade of kinetic energy in compressible turbulence. Astrophysical Journal Letters, 751, L29 (2012)
[14] Aluie, H. Scale decomposition in compressible turbulence. Physica D: Nonlinear Phenomena, 247, 54-65 (2013)
[15] Armstrong, J. W., Spangler, S. R., and Rickett, B. J. Electron density power spectrum in the local interstellar medium. The Astrophysical Journal, 443, 209-221 (1995)
[16] Cardy, J., Falkovich, G., and Gawedzki, K. Nonequilibrium Statistical Mechanics and Turbulence, Cambridge University Press, Cambridge (2008)
[17] Chu, B. T. and Kovasznay, L. S. G. Non-linear interactions in a viscous heatconducting compressible gas. Journal of Fluid Mechanics, 3, 494-514 (1958)
[18] Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt,W., and Mac Low, M. M. Comparing the statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive turbulence forcing. Astronomy and Astrophysics, 512, A81 (2010)
[19] Wang, J. Cascade of Kinetic Energy and Thermodynamic Process in Compressible Turbulence (in Chinese), Post-Doctoral Research Report, Peking University (2014)
[20] Schmidt, W., Federrath, C., and Klessen, R. Is the scaling of supersonic turbulence universal? Physical Review Letters, 101, 194505 (2008)
[21] Galtier, S. and Banerjee, S. Exact relation for correlation functions in compressible isothermal turbulence. Physical Review Letters, 107, 134501 (2011)
[22] Sun, B. H. The spatial scaling laws of compressible turbulence. https://arxiv.org/ abs/1502.02815v5 (2016)
[23] Kovasznay, L. S. G. Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 20, 657-674 (1953)
[24] Lighthill, M. J. The effect of compressibility on turbulence. Proceedings from the 2nd International Astronomical Union Symposium on Gas Dynamics of Cosmic Clouds, North Holland Publishing Company, Amsterdam (1955)
[25] Moiseev, S. S., Toor, A. V., and Yanovsky, V. V. The decay of turbulence in the Burgers model. Physica D: Nonlinear Phenomena, 2, 187-193 (1981)
[26] Kadomtsev, B. B. and Petviashvili, V. I. Acoustic turbulence. Soviet Physics Doklady, 18, 115-118 (1973)
[27] Shivamoggi, B. K. Multifractal aspects of the scaling laws in fully developed compressible turbulence. Annals of Physics, 243, 169-176 (1995)
[28] Bridgman, P. W. Dimensional Analysis, Yale University Press, New Haven (1922)
[29] Sedov, L. I. Similarity and Dimensional Analysis in Mechanics, Academic Press, New York (1959)
[30] Barenblatt, G. I. Similarity, Self-similarity and Intermediate Asymptotics, Cambridge University Press, Cambridge (1996)
[31] Cantwell, B. J. Introduction to Symmetry Analysis, Cambridge University Press, Cambridge (2002)
[32] Sun, B. H. Dimensional Analysis and Lie Group (in Chinese), China High Education Press, Bejing (2016)
[33] Liepmann, H.W. and Roshko, A. Elements of Gasdynamics, Dover Publications, New York (1993)
[34] Von Weizsäcker, C. F. The evolution of galaxies and stars. The Astrophysical Journal, 114, 165-186 (1951)
[35] Fleck, R. C., Jr. Scaling relations for the turbulenct, non-self-gravitating, neutral component of the interstellar medium. The Astrophysical Journal, 458, 739-741 (1996)
[36] Meneveau, C. and Sreenivasan, K. R. Interface dimension in intermittent turbulence. Physical Review A, 41, 2246-2248 (1990)
[37] Sun, B. H. The temporal scaling laws of compressible turbulence. Modern Physics Letters B, 30, 1650297 (2016)

Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals