[1] Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik,21(4), 645-647 (1970)
[2] Grubka, L. J. and Bobba, K. M. Heat transfer characteristics of a continuous stretching surfacewith variable temperature. ASME Journal of Heat Transfer, 107(1), 248-250 (1985)
[3] Elbashbeshy, E. M. A. Heat transfer over a stretching surface with variable surface heat flux.Journal of Physics D: Applied Physics, 31(16), 1951-1955 (1998)
[4] Elbashbeshy, E. M. A. and Bazid, M. A. A. Heat transfer over a continuously moving plateembedded in a non-Darcian porous medium. International Journal of Heat and Mass Transfer,43(17), 3087-3092 (2000)
[5] Hayat, T. and Sajid, M. Analytical solution for axisymmetric flow and heat transfer of a secondgrade fluid past a stretching sheet. International Journal of Heat and Mass Transfer, 50(1-2),75-84 (2007)
[6] Sarma, M. S. Heat transfer in a viscoelastic fluid over a stretching sheet. Journal of MathematicalAnalysis and Applications, 222(1), 268-275 (1998)
[7] Abel, M. S., Datti, P. S., and Mahesha, N. Flow and heat transfer in a power-law fluid over astretching sheet with variable thermal conductivity and nonuniform heat source. InternationalJournal of Heat and Mass Transfer, 52(11-12), 2902-2913 (2009)
[8] Dandapat, B. S., Singh, S. N., and Singh, R. P. Heat transfer due to permeable stretching wall inpresence of transverse magnetic field. Archives of Mechanics, 56(2), 87-101 (2004)
[9] Abel, M. S. and Nandeppanavar, M. M. Heat transfer in MHD viscoelastic boundary layer flowover a stretching sheet with non-uniform heat source/heat sink. Communications in NonlinearScience and Numerical Simulation, 14(5), 2120-2131 (2009)
[10] Mahapatra, T. R., Nandy, S. K., and Gupta, A. S. Magnetohydrodynamic stagnation-point flowof a power-law fluid towards a stretching surface. International Journal of Non-Linear Mechanics,44(2), 124-129 (2009)
[11] Prasad, K. V., Vajravelu, K., and Datti, P. S. The effects of variable fluid properties on thehydro-magnetic flow and heat transfer over a non-linearly stretching sheet. International Journalof Thermal Sciences, 49(3), 609-610 (2010)
[12] Goldstein, S. On backward boundary layers and flow in converging passages. Journal of FluidMechanics, 21(1), 33-45 (1965)
[13] Miklavcic, M. and Wang, C. Y. Viscous flow due to a shrinking sheet. Quarterly of AppliedMathematics, 64(2), 283-290 (2006)
[14] Sajid, M. and Hayat, T. The application of homotopy analysis method for MHD viscous flow dueto a shrinking sheet. Chaos, Solitons and Fractals, 39(3), 1317-1323 (2009)
[15] Hayat, T., Abbas, Z., and Sajid, M. On the analytical solution of MHD flow of a second gradefluid over a shrinking sheet. ASME Journal of Applied Mechanics, 74(6), 1165-1171 (2007)
[16] Hayat, T., Javed, T., and Sajid, M. Analytical solution for MHD rotating flow of a second gradefluid over a shrinking surface. Physics Letters A, 372(18), 3264-3273 (2008)
[17] Fang, T. and Zhang, J. Closed-form exact solutions of MHD viscous flow over a shrinking sheet.Communications in Nonlinear Science and Numerical Simulation, 14(7), 2853-2857 (2009)
[18] Fang, T., Liang, W., and Lee, C. F. A new solution branch for the Blasius equation—a shrinkingsheet problem. Computers and Mathematics with Applications, 56(12), 3088-3095 (2008)
[19] Noor, N. F. M., Kechil, S. A., and Hashim, I. Simple non-perturbative solution for MHD viscousflow due to a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation,15(2), 144-148 (2010)
[20] Gad-el-Hak, M. The fluid mechanics of microdevices—the Freeman scholar lecture. ASME Jour-nal of Fluids Engineering, 121(5), 5-33 (1999)
[21] Pande, G. C. and Goudas, C. L. Hydromagnetic Reyleigh problem for a porous wall in slip flowregime. Astrophysics and Space Science, 243(2), 285-289 (1996)
[22] Yoshimura, A. and Prudhomme, R. K. Wall slip corrections for Couette and parallel disc viscometers.Journal of Rheology, 32(1), 53-67 (1988)
[23] Andersson, H. I. Slip flow past a stretching surface. Acta Mechanica, 158(1-2), 121-125 (2002)
[24] Zhu, J., Zheng, L. C., and Zhang, Z. G. Effects of slip condition on MHD stagnation-point flowover a power-law stretching sheet. ASME Journal of Fluids Engineering (English Edition), 31(4),439-448 (2010)
[25] Fang, T., Zhang, J., and Yao, S. Slip MHD viscous flow over a stretching sheet—an exact solution.Communications in Nonlinear Science and Numerical Simulation, 14(11), 3731-3737 (2009)
[26] Wang, C. Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction.Nonlinear Analysis: Real World Applications, 10(1), 375-380 (2009)
[27] Aziz, A. Hydrodynamic and thermal slip flow boundary layers over a flat plate with constantheat flux boundary condition. Communications in Nonlinear Science and Numerical Simulation,15(3), 573-580 (2010)
[28] Bhattacharyya, K., Mukhopadhyay, S., and Layek, G. C. Slip effects on boundary layer stagnationpointflow and heat transfer towards a shrinking sheet. International Journal of Heat and MassTransfer, 54(1-3), 308-313 (2011)
[29] Wang, C. Analytical solutions for a liquid film on an unsteady stretching surface. Heat and MassTransfer, 42(8), 759-766 (2006)
[30] Ishak, A., Nazar, R., and Pop, I. Heat transfer over an unsteady stretching permeable surfacewith prescribed wall temperature. Nonlinear Analysis: Real World Applications, 10(5), 2909-2913 (2009)
[31] Mukhopadhyay, S. Unsteady boundary layer flow and heat transfer past a porous stretching sheetin presence of variable viscosity and thermal diffusivity. International Journal of Heat and MassTransfer, 52(21-22), 5213-5217 (2009)
[32] Mukhopadhyay, S. Effect of thermal radiation on unsteady mixed convection flow and heat transferover a porous stretching surface in porous medium. International Journal of Heat and MassTransfer, 52(13-14), 3261-3265 (2009)
[33] Tsai, R., Huang, K. H., and Huang, J. S. Flow and heat transfer over an unsteady stretchingsurface with non-uniform heat source. International Communications in Heat and Mass Transfer,35(10), 1340-1343 (2008)
[34] Hang, X., Liao, S. J., and Pop, I. Series solutions of unsteady three-dimensional MHD flow andheat transfer in the boundary layer over an impulsively stretching plate. European Journal ofMechanics-B/Fluids, 26(1), 15-27 (2007)
[35] Ali, M. E. and Magyari, E. Unsteady fluid and heat flow induced by a submerged stretchingsurface while its steady motion is slowed down gradually. International Journal of Heat and MassTransfer, 50(1-2), 188-195 (2007)
[36] Zheng, L. C., Wang, L. J., and Zhang, X. X. Analytical solutions of unsteady boundary flow andheat transfer on a permeable stretching sheet with non-uniform heat source/sink. Communicationsin Nonlinear Science and Numerical Simulation, 16(2), 731-740 (2011)
[37] Pal, D. and Hiremath, P. S. Computational modeling of heat transfer over an unsteady stretchingsurface embedded in a porous medium. Meccanica, 45(3), 415-424 (2010)
[38] Andersson, H. I., Aarseth, J. B., and Dandapat, B. S. Heat transfer in a liquid film on an unsteadystretching surface. International Journal of Heat and Mass Transfer, 43(1), 69-74 (2000)
[39] Wang, C. Y. Liquid film on an unsteady stretching sheet. Quarterly of Applied Mathematics,48(4), 601-610 (1990)
[40] Merkin, J. H. and Kumaran, V. The unsteady MHD boundary-layer flow on a shrinking sheet.European Journal of Mechanics-B/Fluids, 29(5), 357-363 (2010)
[41] Fan, T., Xu, H., and Pop, I. Unsteady stagnation flow and heat transfer towards a shrinking sheet.International Communications in Heat and Mass Transfer, 37(10), 1440-1446 (2010)
[42] Fang, T. G., Zhang, J., and Yao, S. S. Viscous flow over an unsteady shrinking sheet with masstransfer. Chinese Physics Letters, 26(1), 014703 (2009)
[43] Zhao, J. K. Differential Transformation and Its Applications for Electrical Circuits (in Chinese),Huazhong University Press, Wuhan (1986)
[44] Ayaz, F. Solutions of the systems of differential equations by differential transform method. AppliedMathematics and Computation, 147(2), 547-567 (2004)
[45] Chang, S. H. and Chang, I. L. A new algorithm for calculating two-dimensional differential transformof nonlinear functions. Applied Mathematics and Computation, 215(7), 2486-2494 (2009)
[46] Abdel-Halim Hassan, I. H. Comparison differential transformation technique with Adomian decompositionmethod for linear and nonlinear initial value problems. Chaos, Solitons and Fractals,36(1), 53-65 (2008)
[47] Boyd, J. Padé approximant algorithm for solving nonlinear ordinary differential equation boundaryvalue problems on an unbounded domain. Computers in Physics, 11(3), 299-303 (1997) |