[1] |
SHEIKHOLESLAMI, M., GANJI, D. D., ASHORYNEJAD, H. R., and ROKNI, H. B. , Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25-36 (2012) doi:10.1007/s10483-012-1531-7 |
|
[2] |
SHEIKHOLESLAMI, M. and SHEHZAD, S. A. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. International Journal of Heat and Mass Transfer, 122, 1264-1271 (2018) doi:10.1016/j.ijheatmasstransfer.2018.02.080 |
|
[3] |
SHEIKHOLESLAMI, M., GORJI-BANDPY, M., and DOMAIRRY, G. Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Applied Mathematics and Mechanics (English Edition), 34(7), 833-846 (2013) doi:10.1007/s10483-013-1711-9 |
|
[4] |
MAPARU, A. K., GANVIR, V., and RAI, B. Titania nanofluids with improved photocatalytic activity under visible light. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 482, 345-352 (2015) |
|
[5] |
SHEIKHOLESLAMI, M. and ROKNI, H. B. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Physics of Fluids, 30(1), 012003 (2018) doi:10.1063/1.5012517 |
|
[6] |
SHEIKHOLESLAMI, M. and SADOUGHI, M. K. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 116, 909-919 (2018) doi:10.1016/j.ijheatmasstransfer.2017.09.086 |
|
[7] |
SHEIKHOLESLAMI, M. and ROKNI, H. B. Simulation of nanofluid heat transfer in presence of magnetic field:a review. International Journal of Heat and Mass Transfer, 115, 1203-1233 (2017) doi:10.1016/j.ijheatmasstransfer.2017.08.108 |
|
[8] |
SHEIKHOLESLAMI, M. and GANJI, D. D. Nanofluid convective heat transfer using semi analytical and numerical approaches:a review. Journal of the Taiwan Institute of Chemical Engineers, 65, 43-77 (2016) doi:10.1016/j.jtice.2016.05.014 |
|
[9] |
HAYAT, T., QAYYUM, S., IMTIAZ, M., and ALSAEDI, A. Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. International Journal of Heat and Mass Transfer, 102, 723-732 (2016) doi:10.1016/j.ijheatmasstransfer.2016.06.059 |
|
[10] |
SHEIKHOLESLAMI, M. and CHAMKHA, A. J. Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numerical Heat Transfer, Part A,, 69(7), 781-793 (2016) doi:10.1080/10407782.2015.1090819 |
|
[11] |
HASSAN, G. E., ELSAYED, M., ZAHRAA, E., ALI, M. A., and HANAFY, A. A. New temperature-based models for predicting global solar radiation. Applied Energy, 179, 437-450 (2016) doi:10.1016/j.apenergy.2016.07.006 |
|
[12] |
NAYAK, M. K., AKBAR, N. S., PANDEY, V. S., KHAN, Z. H., and TRIPATHI, D. 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technology, 315, 205-215 (2017) doi:10.1016/j.powtec.2017.04.017 |
|
[13] |
SHEIKHOLESLAMI, M. and BHATTI, M. M. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111, 1039-1049 (2017) doi:10.1016/j.ijheatmasstransfer.2017.04.070 |
|
[14] |
TAO, Y.B. and HE, Y. L. Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Applied Energy, 143, 38-46 (2015) doi:10.1016/j.apenergy.2015.01.008 |
|
[15] |
MAKINDE, O. D., MABOOD, F., KHAN, W. A., and TSHEHLA, M. S. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liuids, 219, 624-630 (2016) |
|
[16] |
MEZRHAB, A., BOUALI, H., AMAOUI, H., and BOUZI, M. Computation of combined naturalconvection and radiation heat-transfer in a cavity having a suare body at its center. Applied Energy, 83(9), 1004-1023 (2006) doi:10.1016/j.apenergy.2005.09.006 |
|
[17] |
SHEREMET, M. A., POP, I., and ROŞA, N. C. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid:Buongiorno's mathematical model. Journal of the Taiwan Institute of Chemical Engineers, 61, 211-222 (2016) doi:10.1016/j.jtice.2015.12.015 |
|
[18] |
HAYAT, T., NISAR, Z., YASMIN, H., and ALSAEDI, A. Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. Journal of Molecular Liuids, 220, 448-453 (2016) |
|
[19] |
RAJU, C. S. K., SANDEEP, N., and SUGUNAMMA, V. Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity:a surgical implant application. Journal of Molecular Liuids, 222, 1183-1191 (2016) |
|
[20] |
AHMAD, R. and MUSTAFA, M. Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. Journal of Molecular Liuids, 220, 635-641 (2016) |
|
[21] |
CHAMKHA, A. and AHMED, S. E. Unsteady MHD stagnation-point flow with heat and mass transfer for a three-dimensional porous body in the presence of heat generation/absorption and chemical reaction. Progress in Computational Fluid Dynamics, 11, 388-396 (2011) doi:10.1504/PCFD.2011.042848 |
|
[22] |
BACHOK, N., ISHAK, A., NAZAR, R., and POP, I. Flow and heat transfer at a general threedimensional stagnation point in a nanofluid. Physica B:Condensed Matter, 405(24), 4914-4918 (2010) doi:10.1016/j.physb.2010.09.031 |
|
[23] |
HAYAT, T., KHAN, I. M., FAROOQ, M., ALSAEDI, A., and YASMEEN, T. Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation. International Journal of Heat and Mass Transfer, 106, 810-815 (2017) doi:10.1016/j.ijheatmasstransfer.2016.08.115 |
|
[24] |
KHANAFER, K., VAFAI, K., and LIGHTSTONE, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 446, 3639-3653 (2003) |
|
[25] |
SHEIKHOLESLAMI, M. Application of Control Volume based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer, 1st ed. , Elsevier, Amsterdam (2018) |
|
[26] |
MOALLEMI, M.K. and JANG, K. S. Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. International Journal of Heat and Mass Transfer, 35, 1881-1892 (1992) doi:10.1016/0017-9310(92)90191-T |
|
[27] |
RARANI, E. M., ETESAMI, N., and NASR ESFAHANY, M. Influence of the uniform electric field on viscosity of magnetic nanofluid (Fe3O4-EG). Journal of Applied Physics, 112, 094903 (2012) doi:10.1063/1.4763469 |
|
[28] |
CHAMKHA, A. J., ABD EL-AZIZ, M. M., and AHMED, S. E. Effects of thermal stratification on flow and heat transfer due to a stretching cylinder with uniform suction/injection. International Journal of Energy and Technology, 2, 1-7 (2010) doi:10.7763/IJET.2010.V2.91 |
|
[29] |
REHMAN, F. U., NADEEM, S., and HAQ, R. U. Heat transfer analysis for three-dimensional stagnation-point flow over an exponentially stretching surface. Chinese Journal of Physics, 55, 1552-1560 (2017) doi:10.1016/j.cjph.2017.05.006 |
|
[30] |
RAEES, A., XU, H., SUN, Q., and POP, I. Mixed convection in a gravity-driven nano-liuid film containing both nanoparticles and gyrotactic microorganisms. Applied Mathematics and Mechanics (English Edition), 36(2), 163-178 (2015) doi:10.1007/s10483-015-1901-7 |
|
[31] |
TAHIR, F., GUL, T., ISLAM, S., SHAH, Z., KHAN, A., KHAN, W., and ALI, W. Flow of a nano-liuid film of Maxwell fluid with thermal radiation and magneto hydrodynamic properties on an unstable stretching sheet. Journal of Nanofluids, 6, 1021-1030 (2017) doi:10.1166/jon.2017.1400 |
|
[32] |
SOOMRO, F. A., HAQ, R. U., AL-MDALLAL, Q. M., and ZHANG, Q. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface. Results in Physics, 8, 404-414 (2018) doi:10.1016/j.rinp.2017.12.037 |
|
[33] |
KHAN, N. S., GUL, T., ISLAM, S., KHAN, A., and SHAH, Z. Brownian motion and thermophoresis effects on MHD mixed convective thin film second-grade nanofluid flow with Hall effect and heat transfer past a stretching sheet. Journal of Nanofluids, 6, 1-18 (2017) doi:10.1166/jon.2017.1307 |
|
[34] |
SHEIKHOLESLAMI, M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liuids, 249, 739-746 (2018) |
|
[35] |
MIRZA, I. A., ABDULHAMEED, M., and SHAFIE, S. Magnetohydrodynamic approach of nonNewtonian blood flow with magnetic particles in stenosed artery. Applied Mathematics and Mechanics (English Edition), 38(3), 379-392 (2017) doi:10.1007/s10483-017-2172-7 |
|
[36] |
HAYAT, T., NAZAR, H., IMTIAZ, M., and ALSAEDI, A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 38(12), 1663-1678 (2017) doi:10.1007/s10483-017-2289-8 |
|
[37] |
SHEHZAD, S. A., HAYAT, T., ALSAEDI, A., and MERAJ, M. A. Cattaneo-Christov heat and mass flux model for 3D hydrodynamic flow of chemically reactive Maxwell liuid. Applied Mathematics and Mechanics (English Edition), 38(10), 1347-1356 (2017) doi:10.1007/s10483-017-2250-6 |
|
[38] |
AHMED, S. E. Modeling natural convection boundary layer flow of micropolar nanofluid over vertical permeable cone with variable wall temperature. Applied Mathematics and Mechanics (English Edition), 38(8), 1171-1180 (2017) doi:10.1007/s10483-017-2231-9 |
|
[39] |
ZHAO, Q. K., XU, H., TAO, L. B., RAEES, A., and SUN, Q. Three-dimensional free bioconvection of nanofluid near stagnation point on general curved isothermal surface. Applied Mathematics and Mechanics (English Edition), 37(4), 417-432 (2016) doi:10.1007/s10483-016-2046-9 |
|
[40] |
XU, H. A homogeneous-heterogeneous reaction model for heat fluid flow in the stagnation region of a plane surface. International Communications in Heat and Mass Transfer, 87, 112-117 (2017) doi:10.1016/j.icheatmasstransfer.2017.07.012 |
|
[41] |
TURKYILMAZOGLU, M. Flow of nanofluid plane wall jet and heat transfer. European Journal of Mechanics-B/Fluids, 59, 18-24 (2016) doi:10.1016/j.euromechflu.2016.04.007 |
|