[1] Nakamura, H. and Igarashi, T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3 000 to 15 000. International Journal of Heat and Fluid Flow, 25(5), 741-748 (2004)
[2] Lu, X. Y. and Ling, G. C. Three-dimensional instability of an oscillating viscous flow past a circular cylinder. Applied Mathematics and Mechanics (English Edition), 24(7), 791-800 (2003) DOI 10.1007/BF02437811
[3] Mohammed, H. A. and Salman, Y. K. Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder. Applied Thermal Engineering, 27(8-9), 1522-1533 (2007)
[4] Fetecau, C., Akhtar, W., Imran, M. A., and Vieru, D. On the oscillating motion of an Oldroyd-B fluid between two infinite circular cylinders. Computers and Mathematics with Applications, 59(8), 2836-2845 (2010)
[5] Coutanceau, M. and Menard, C. Influence of rotation on the near-wake development behind an impulsively started circular cylinder. Journal of Fluid Mechanics, 158, 399-466 (1985)
[6] Sohankar, A., Norberg, C., and Davidson, L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds number. Physics of Fluids, 11(2), 288-306 (1999)
[7] Zdravkovich, M. M. Review of flow interference between two circular cylinders in various arrangements. ASME Journal of Fluid Engineering, 99(4), 618-633 (1977)
[8] Zdravkovich, M. M. Flow induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration, 101(4), 511-521 (1985)
[9] Yoon, H. S., Chun, H. H., Kim, J. H., and Park, I. L. R. Flow characteristics of two rotating side-by-side circular cylinders. Computers and Fluids, 38(2), 466-474 (2009)
[10] Mittal, S., Kumar, V., and Raghuvanshi, A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. International Journal for Numerical Methods in Fluids, 25(11), 1315-1344 (1997)
[11] Meneghini, J. R., Saltara, F., Siqueira, C. L. R., and Ferrari, J. A. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures, 15(2), 327-350 (2001)
[12] Nemati, H., Sedighi, K., Farhadi, M., Pirouz, M. M., and Fattahi, E. Numerical simulation of fluid flow around two rotating side-by-side circular cylinders by lattice Boltzmann method. International Journal of Computational Fluid Dynamics, 24(3-4), 83-94 (2010)
[13] Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E., and Darzi, A. A. R. Lattice Boltzmann simulation of nanofluid in lid-driven cavity. International Communications in Heat and Mass Transfer, 37(10), 1528-1534 (2010)
[14] Kareem, W. A., Izawa, S., Xiong, A. K., and Fukunishi, Y. Lattice Boltzmann simulations of homogeneous isotropic turbulence. Computers and Mathematics with Applications, 58(5), 1055- 1061 (2009)
[15] Lee, K., Yu, D., and Girimaji, S. S. Lattice Boltzmann DNS of decaying compressible isotropic turbulence with temperature fluctuations. International Journal of Computational Fluid Dynamics, 20(6), 401-413 (2006)
[16] Xu, Y. S., Liu, C. Q., and Yu, H. D. New studying of lattice Boltzmann method for two-phase driven in porous media. Applied Mathematics and Mechanics (English Edition), 23(4), 387-393 (2002) DOI 10.1007/BF02436207
[17] Yiotis, A. G., Kainourgiakis, M. E., Kikkinides, E. S., and Stubos, A. K. Application of the lattice-Boltzmann method to the modeling of population blob dynamics in 2D porous domains. Computers and Mathematics with Applications, 59(7), 2315-2325 (2010)
[18] Fattahi, E., Farhadi, M., and Sedighi, K. Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus. International Journal of Thermal Science, 49(12), 2353-2362 (2010)
[19] Li, Y., Duan, Y., Guo, Y., and Luo, R. Numerical simulation of laminar jet-forced flow using lattice Boltzmann method. Applied Mathematics and Mechanics (English Edition), 30(4), 445- 453 (2009) DOI 10.1007/s10483-009-0405-z
[20] Premnath, K. N. and Abraham, J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. Journal of Computational Physics, 224(2), 539-559 (2007)
[21] Yu, D., Mei, R., Luo, L. S., and Shyy, W. Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences, 39(5), 329-367 (2003)
[22] Guo, Z., Shi, B., and Zheng, C. A coupled lattice BGK model for the Boussinesq equations. International Journal for Numerical Methods in Fluids, 39(4), 325-342 (2002)
[23] Barrios, G., Rechtman, R., Rojas, J., and Tovar, R. The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall. Journal of Fluid Mechanics, 522, 91-100 (2005)
[24] Mei, R., Yu, D., Shyy, W., and Luo, L. S. Force evaluation in the lattice Boltzmann method involving curved geometry. Physical Review E, 65(4), 1/041203-14/041203 (2002)
[25] Huang, H. B., Lee, T. S., and Shu, C. Thermal curved boundary treatment for the thermal lattice Boltzmann equation. International Journal of Modern Physics C, 17(5), 631-643 (2006)
[26] Yan, Y. Y. and Zu, Y. Q. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder — an LBM approach. International Journal of Heat and Mass Transfer, 51(9-10), 2519-2536 (2008)
[27] Huang, H. B., Lu, X. Y., and Sukop, M. C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations. Journal of Physics A: Mathematical and Theoretical, 44(5), 055001 (2011)
[28] Lai, H. and Yan, Y. Y. The effect of choosing dependent variables and cell-face velocities on convergence of the simple algorithm using non-orthogonal grids. International Journal of Numerical Methods for Heat and Fluid Flow, 11(6), 524-546 (2001)
[29] Eckert, E. R. G. and Soehngen, E. Distribution of heat transfer coefficients around circular cylinders in cross-flow at Reynolds numbers from 20 to 500. Transaction of the ASME, 74(3), 343-347 (1952) |