[1] Olver P J.Evolution equations possessing infinitely many symmetries[J].J Math Phys,1997,18(6):1212~1215. [2] Ablowits M J,Kaup D J,Newell A C,etal .The inverse Scattering transform——Fourier analysis for nonlinear problems[J].Stud Appl Math,1974,53(4):249~315. [3] Miura R M,Gardner C S,Kruskal M D.Korteweg-de Vriesequationand generalizationsⅠ,Ⅱ[J].JMath Phys,1968,9(8):1202~1209. [4] Magri F.Asimple model of the integrable Hamiltonian equations[J].JMath Phys,1978,19(5):1156~1162. [5] Olver P J.Applications of Lie Groups to Differential Equations[M].New York;Springer-Verlag,1986. [6] Krasil’ shchik I S,Vinogradov AM.Nonlocal treads in the geometry of differential equations,symmetries,conservation laws and Backlund transformations[J].Acta Appl Math,1989,15(2):161~209. [7] Ayse Karasu,Jordan KdV systems and painleve property[J].Int J Theo Phys,1997,36(3):705~713. [8] Khor’kova N G.Conservation laws and nonlocalsym metries[J].Math Notes,1989,44(4);562~568. [9] Wahlquist H D,Estabrook F B.Prolongation structures of nonlinear evolution equations[J].J Math Phys,1975,16(1):1~7. [10] Dodd R K.The general prolongation formulaefor nonlocalsym metries[J].Phys Lett,1994,A195;125~127. [11] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989. [12] Krasil’shchikIS,Kersten PH M.Deformations and recursion operators for evolution equation[A].Geometryin Partial Differential Equations[C].World Scientific Publishing Co.1994,114~155. [13] Zhang Hongqing.Aunited theory on general solutions ofsystems of elasticity equations[J].Journal of Dalian University of Technology,1978,17(3):23~27.(in Chinese) [14] Zhang Hongqing.The algebraization,mechanization,simplicization and geometrization of mechanics [A].In;Reports on MMM-Ⅶ[C] ,1997,20~25.(in Chinese) |