[1] Bengtsson R,Frauendorf S.Quasiparide spectra near the yrast line[J].Nuclear Physics,1979,A327:139~171. [2] Luo Shaokai.On the theory for relativistic analytical mechanics[J].Teaching Material Communication,1987,(5):31~34.(in Chinese) [3] Luo Shaokai.Dynamical theory of relativistic nonlinear nonholonomic systems[J].Shanghai Journal of Mechanics,1991,12(1):67~70.(in Chinese) [4] Luo Shaokai.Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic system[A].In;Proc ICDVC[C].Beijing:Beijing University Press,1990,645~652. [5] Luo Shaokai.Relativistic generalized Volterra equation of variable mass arbitrary order nonlinear nonholonomic systems[J].Journalof Mathematics and Physics,1992,12,(inaddition):27~29.(in Chinese) [6] Luo Shaokai.Relativistic variation principles and equation of motion for variable mass controllable mechanics systems[J].Applied Mathematics and Mechanics (English Ed),1996,17(7):683~692. [7] Carmeli M.Field theory on R×X3 topology (I-II)[J].Foundations of Physics,1985,15(2):175~185. [8] Carmeli M.The dynamics of rapidly rotating bodies[J].Foundations of Physics,1985,15(8):889~903. [9] Carmeli M.Field theory on R×S3 topology (Ⅲ)[J].Foundation of Physics,1985,15(10);1019~1029. [10] Carmeli M.Rotational relativity theory[J].International JournalofTheoretical Physics,1986,25(1):89~94. [11] Luo Shaokai.Thetheory ofrelativistic analytical mechanics of the rotational systems[J].Applied Mathematics and Mechanics(English Ed),1998,19(1);45~58. [12] Arnold VI.Mathematical Methodsof Classical Mechanics[M].Berlin;Springer-Verlag,1978. [13] Mei Fengxiang.Algebrac structure of Chaplygin equation [J].Acta Mechanica Sinica,1996,28(3);328~335.(in Chinese) [14] Mei Fengxiang,Lui Rui,Luo Yong.Advanced Analytical Mechanics[M].Beijing;Beijing Institute of Technology Press,1991,242~243,416~430.(in Chinese) [15] Mei Fengxiang,Shi Rongcang.Algebrac structure and Poisson integral method for nonholonomic systems[J].Journalof BIT,1996,16,(in addition);51~55.(in Chinese) |