[1] Arnold L, Wihstutz V. Lyapunov Exponents[M]. Lecture Notes in Mathematics,1186. Berlin: Springer-Verlag,1986.
[2] Arnold L, Crauel H, Eckmann J P. Lyapunov Exponents[M], Lecture Notesin Mathematics,1486. Berlin: Springer-Verlag,1991.
[3] Liu Xianbin. Bifurcation behavior of stochastic mechanics system and its variationalmethod [D]. Ph D. Thesis. Chengdu: Southwest Jiaotong University,1995.(in Chinese)
[4] Liu Xianbin. Chen Qiu, Chen Dapeng. The researches on the stability and bifurcation of nonlinearstochastic dynamicalsystems [J]. Advancesin Mechanics,1996,26(4):437~453.(in Chinese)
[5] Liu Xianbin, Chen Qiu. Advancesin the researches on stochastic stability and stochasticbifurcation [R]. Invited paper of M M M-Ⅶ, Shanghai,1997.(in Chinese)
[6] Khasminskii R Z. Stochastic Stability of Differential Equations [M]. Alphen aan den Rijin,the Netherlands: Sijthoff and Noordhoff,1980.
[7] Arnold L, Papanicolaou G, Wihstutz V. Asymptotic analysis ofthe Lyapunov exponentsand rotation numbers ofthe random oscillator and applications[J]. S I A M J Appl Math,1986,46(3):427~450.
[8] Arnold L. Lyapunov exponents of nonlinear stochastic systems [A]. In: F Ziegler, G I Schueller eds. Nonlinear Stochastic Dynamic Engrg Systems, Berlin, New York: Springer-Verlag,1987,181~203.
[9] Arnold L, Boxler P. Eigenvalues, bifurcation and center manifolds in the presence ofnoise [A]. In: C M Dafermos, G Ladas, G. Papannicolaou eds. Differential Equations[M]. New York: Marcel Dekker Inc,1990,33~50.
[10] Ariaratnam S T, Xie W C. Sensitivity of pitchfork bifurcation to stochastic perturbation[J]. Dyna & Stab Sys,1992,7(3):139~150.
[11] Ariaratnam S T, Xie W C. Lyapunov exponents and stochastic stability ofcoupled linearsystems underrealnoise excitation [J]. A S M E J Appl Mech,1992,59(3):664~673.
[12] Ariaratnam S T, Xie W C. Lyapunov exponents and stochastic stability of two-dimensionalparametrically excited random systems [J]. A S M E J Appl Mech,1993,60(5):677~682.
[13] Kozin F. Stability ofthe Linear Stochaxtic Systems [M]. Lecture Notes in Math,294. New York: Springer-Verlag,1972,186~229.
[14] Namachchivaya Sri N, Ariaratnam S T. Stochastically perturbed Hoph bifurcation [J]. Int J Nonlinear Mech,1987,22(5):363~373.
[15] Namachchivaya Sri N. Stochastic stability of a gyropendulum underrandom verticalsupportexcitation [J]. J Sound & Vib,1987,119(2):363~373.
[16] Namachchivaya Sri N. Hopf bifurcation in the presence of both parametric and externalstochastic excitation [J]. A S M E J Appl Mech,1998,55(4):923~930.
[17] Namachchivaya Sri N, Talwar S. Maximal Lyapunov exponent and rotation number forstochastically peturbed co-dimension two bifurcation [J]. J Sound & Vib,1993,169(3):349~372.
[18] Liu Xianbin, Chen Qiu, Chen Dapeng. On thetwo bifurcations of a white-noise excited Hopf bifurcation system [J]. Applied Mathematics and Mechanics (English Ed),1997,18(9):835~846.
[19] Liu Xianbin, Chen Qiu, Onthe Hopfbifurcation system inthe presence ofparametricrealnoises [J]. Acta Mechanica Sinica,1997,29(2):158~166.(in Chinese)
[20] Liu Xianbin, Chen Qiu. Sun Xunfang. On co-dimension 2 bifurcation system excitedparametrically by white noise [J]. Acta Mechanica Sinica,1997,29(5):563~572.(in Chinese)
[21] Pardoux E, Wihstutz V. Lyapunov exponentandrotation number oftwo-dimensionallinear stochastic systems with small diffusion [J]. S I A M J Appl Math,1988,48(2):442~457.
[22] Zhu Weiqiu. Stochastic Vibration [M]. Beijing: Science Press,1992.(in Chinese)
[23] Roy R V. Stochastic averaging of oscillators excited by coloured Gaussian processes [J]. Int J Nonlinear Mech,1994,29(4):461~475.
[24] Dygas M M K, Matkowsky B J, Schuss Z. Stochastic stability of nonlinear oscillators[J]. S I A M J Appl Math,1988,48(5):1115~1127. |