[1] Birkhoff,G.,Hydrodynamics,2nd Ed,Princeton University Press(1960). [2] Michal,A.D.,Differential invariants and invariant partial differential equations under continuous transformation groups in normed linear spaces,Proc.Nat.Acad.Sci.,37(1951),623-627. [3] Morgan,A.J.A.,The reduction by one of the number of independent variables in some systems of partial differential equations.Quart.J.Math.,Oxford,Ser.2(1952),250-259. [4] Hansen,A.G.,Similarity Analyses of Boundary Value Problems in Engineering,Prentice-Hall(1964). [5] Ames,W.F.,Similarity for the nonlinear diffusion equation,Ind.Eng.Chem.Fundam.,4,1(1965),72-76. [6] Lee,S.Y.and W.F.Ames,Similarity solutions for non-Newtonian fluids.A.I.Ch.E.J.,12.44(1966),700-708. [7] Na,T.Y.and A.G.Hansen,Possible similarity solutions of the laminar natural convection flow of non-Newtonian fluids,Int.J.Heat Mass Transfer,9(1966),261-626. [8] Na.Y.T.and A.G.Hansen,Similarity solutions of a class of laminar three-dimensional boundary layer equations of power law fluids,Int.J.Non-Linear Mech.,2(1967),373-385. [9] Gabbert,C.H.,Similarity for unsteady compressible boundary layers,AIAA J.,5,6(1967),1198-1200. [10] Moran.M.J.and R.A.Gaggioli,Reduction of the number of variables in systems of partial differential equations,with auxiliary conditions,SIAM J.Appl.Math.,16(1968),202-215. [11] Hansen,A.G.and T.Y.Na,Similarity solutions of laminar,incompressible boundary layer equations of non-Newtonian fluids,J.Basic Eng(1968),71-74. [12] Moran,M.J.and R.A.Gaggioli,Similarity analyses via group theory,AIAA J.,6,10(1968),2014-2016. [13] Ames.W.F.,Nonlinear partial differential equations in Engineering.Vol.Ⅱ(1972). [14] Bluman,G.W and J.D.Cole,Similarity methods for differential equations,Springer-Verlag.New York(1974). [15] Dresner,L.Sanilarity Solutions Nonlinear Partial Differential Equations.Pitman(1983). [16] Frydryehowicv,W.and M.C.Singh,Group theoretic and similarity analysis of hyperbolic partial differential equations,J.Math.Anal.Appl.,114(1986),75-99. [17] Iimol,M.G.and N.L.Kalthia,Similarity solutions of three-dimensional boundary layer equations of non-Newtonian fluids,Int.J.Nonlinear Mech.,21,6(1986),475-481. [18] Donato,A.,Similarity analysis and non-linear wave propagation,Int.J.Non-Linear Mech.,22.4(1987),307-314. [19] Bluman,G.W.and J.D.Cole,The general similarity solution of the heat equation,J.Math.Mech.,18,11(1969),1025-1042. [20] Nariboli,G.A.Self-similar solutions of some nonlinear equations,Appl.Sci.Res.,22(1970),449-461. [21] Bluman,G.W.,Slimlarity solutions of the one-dimensional Fokker-Planck equation,Int.J.Non-Linear Mech.,6(1971),143-153. [22] Bluman,G.W.and J.D.Cole,Similarity Methods for Differential Equations,Springer,Berlin(1974). [23] Bluman,G.W.Applications of the general similarity solution of the heat equation to boundary-value problems Quart.Appl.Math.,(1974),403-415. [24] Shen,H.and W.F.Ames,On invariant solutions of the Korteweg-de Vries equation,Phys.Lett.,49A(1974),313-314. [25] Mayer,Humi,Invariant solutions for a class of diffusion equations,J.Math.Phys.,18,6(1977),1705-1708. [26] Lakshmanan,M.and P.Kaliappan,On the invariant solutions of the Korteweg-de Vries-Burgers equations.Phys.Lett.,71A,2/3(1979),166-168. [27] Seshadri(edmonton),R.and M.C.Singh(calgary),Similarity analysis of wave propagation problems in nonlinear rods,Arch.Mech.,32,b(1980),933-945. [28] Logan,J.D.and J.D,J.Perey,Similarity solutions for reactive shock hydrodynamics,SIAM.J.Appl.Math.,39,3(1980),512-527. [29] Thien,N.P.,A method to obtain some similarity solutions to the generalized Newtonian fluid,ZAMP,32(1981).609-615. [30] Lioyd,S.P.,The infinitesimal group of the Navier-Stokes equations,Acta Mech..38(1981),85-98. [31] Ames,W.F.and R J.Lohner,Group properties of Ua=[ƒ(u)ux]x,Int.J.Non-linear Mech.,16,5/6(1981),439-447. [32] Hill.J.M.,Solution of Differential Equations by Means of One-Parameter Group |