Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (11): 1495-1504 .doi: https://doi.org/10.1007/s10483-008-1110-y

• Articles • 上一篇    下一篇

流体饱和多孔隙介质波动方程小波有限差分法

贺英;韩波   

  1. 哈尔滨工业大学数学系 哈尔滨 150001
  • 收稿日期:2008-03-20 修回日期:2008-09-26 出版日期:2008-11-01 发布日期:2008-11-01
  • 通讯作者: 贺英

A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media

HE Ying;HAN Bo   

  1. Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China
  • Received:2008-03-20 Revised:2008-09-26 Online:2008-11-01 Published:2008-11-01
  • Contact: HE Ying

摘要: 本文研究流体饱和多孔隙介质中波动方程的数值模拟. 针对求解二维弹性波方程问题,提出小波有限差分法.该方法综合了小波多分辨分析计算灵活、计算效率高特性和有限差分易于实现的优点. 数值模拟的结果显示此方法对于求解流体饱和多孔隙介质方程的数值模拟是有效稳定的.

关键词: 小波多分辨分析, 数值模拟, 双相介质, 有限差分法

Abstract: In this paper, we consider numerical simulation of wave propagation in fluid-saturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.

Key words: wavelet multiresolution method, numerical simulation, fluid-saturated porous media, finite-difference method

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals