Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (9): 1239-1249 .doi: https://doi.org/10.1007/s10483-008-0913-z

• Articles • 上一篇    

跳扩散对偶模型在带壁分红策略下的分红函数

李波,吴荣   

  1. 南开大学 数学科学学院,天津 300071
  • 收稿日期:2007-10-30 修回日期:2008-07-31 出版日期:2008-09-10 发布日期:2008-09-10
  • 通讯作者: 李波

The dividend function in the jump-diffusion dual model with barrier dividend strategy

LI Bo, WU Rong   

  1. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China
  • Received:2007-10-30 Revised:2008-07-31 Online:2008-09-10 Published:2008-09-10
  • Contact: LI Bo

摘要: 考虑了带干扰的古典风险模型的对偶模型,讨论了模型在带壁分红策略下的一些结论.通过研究过程的局部时,证明了所讨论函数的边界条件.用在没有分红策略下模型的函数,给出了期望折现分红憾事的显示表达.在最后一节,对于跳服相位分布的情形,给出了数值例子,并讨论了最优分红边界的存在性.

关键词: 破产前余额, 赤子, 复合Poisson过程, 扩散过程, Gerber-Shiu函数, 微积分方程, 破产时

Abstract: A dual model of the perturbed classical compound Poisson risk model is considered under a constant dividend barrier. A new method is used in deriving the boundary condition of the equation for the expectation function by studying the local time of a related process. We obtain the expression for the expected discount dividend function in terms of those in the corresponding perturbed compound Poisson risk model without barriers. A special case in which the gain size is phase-type distributed is illustrated. We also consider the existence of the optimal dividend level.

Key words: compound Poisson process, deficit at ruin, time of ruin, surplus before ruin, diffusion process, Gerber-Shiu function, integro-differential equation

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals