Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (9): 1195-1201 .doi: https://doi.org/10.1007/s10483-008-0908-6

• Articles • 上一篇    下一篇

Bogdanov-Takens系统极限环和同宿轨线及分岔

黄赪彪,刘佳   

  1. 中山大学 应用力学与工程系,广州 510275
  • 收稿日期:2007-09-25 修回日期:2008-07-19 出版日期:2008-09-10 发布日期:2008-09-10
  • 通讯作者: 黄赪彪

Limit cycles and homoclinic orbits and their bifurcation of Bogdanov-Takens system

HUANG Cheng-biao, LIU Jia   

  1. Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
  • Received:2007-09-25 Revised:2008-07-19 Online:2008-09-10 Published:2008-09-10
  • Contact: HUANG Cheng-biao

摘要: 讨论Bogdanov-Takens系统极限环、同宿轨线及其关于参数分岔的曲线定量分析。给出这些问题的近似解析表达式的参数增量法;利用时间变换,将极限环和同宿线表示为广义谐函数的解析表达式;画出参数与极限环关于振幅稳定性特征指数、极限环与同宿轨线表示为广义谐函数的解析表达式;画出参数与极限环关于振幅稳定性特征指数、极限环与同宿轨线的相图,以及参数的分岔图等曲线.

关键词: 同宿轨线, Bogdanov-Takens系统, 分岔图, 参数增量法, 极限环

Abstract: A quantitative analysis of limit cycles and homoclinic orbits, and the bifurcation curve for the Bogdanov-Takens system are discussed. The parameter incremental method for approximate analytical-expressions of these problems is given. These analytical-expressions of the limit cycle and homoclinic orbit are shown as the generalized harmonic functions by employing a time transformation. Curves of the parameters and the stability characteristic exponent of the limit cycle versus amplitude are drawn. Some of the limit cycles and homoclinic orbits phase portraits are plotted. The relationship curves of parameters μand αwith amplitude a and the bifurcation diagrams about the parameter are also given. The numerical accuracy of the calculation results is good.

Key words: parameter incremental method, analytical- expressions, Bogdanov-Takens system, limit cycle, homoclinic orbit, bifurcation diagrams

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals