Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (8): 1053-1066 .doi: https://doi.org/10.1007/s10483-008-0809-y

• Articles • 上一篇    下一篇

导电薄板的磁弹性组合共振分析

胡宇达1,李晶1,2   

  1. 1.燕山大学 建筑工程与力学学院,河北 秦皇岛 066004; 2.唐山学院,河北 唐山 063000  
  • 收稿日期:2007-09-04 修回日期:2008-07-15 出版日期:2008-08-18 发布日期:2008-08-18
  • 通讯作者: 胡宇达

Magneto-elastic combination resonances analysis of current-conducting thin plate

HU Yu-da1,LI Jing1,2   

  1. 1. School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, Hebei Province, P. R. China;
    2. Tangshan College, Tangshan 063000, Hebei Province, P. R. China
  • Received:2007-09-04 Revised:2008-07-15 Online:2008-08-18 Published:2008-08-18
  • Contact: HU Yu-da

摘要: 基于Mexwell方程,给出了导电薄板的非线性磁弹性振动方程、电动力学方程和电磁力表达式.在此基础上,研究了横向磁场中梁式导电薄板的磁弹性组合共振问题,应用Galerkin法导出了相应的非线性振动微分方程组.利用多尺度法进行求解,得到了系统稳态运动下的幅频响应方程,分析了组合共振激发的条件.根据Liapunov近似稳定性理论,对稳定解的稳定性进行了分析,得到了稳定性的判定条件.通过数值计算,给出了一、二阶模态下共振振幅随调协参数、激励幅值和磁场请度的变化规律曲线图,以及系统振动的时程响应图、相图、Poincaré映射图和频谱图,进一步分析了电磁、机械等参量对解的稳定性及分岔特性的影响,并讨论了系统的倍周期和概周期等复杂动力学行为.

关键词: 磁弹性, 导电薄板, 组合共振, 稳定性, 多尺度法

Abstract: Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electromagnetic forces are derived. In addition, the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant transverse magnetic filed are studied. Using the Galerkin method, the corresponding nonlinear vibration differential equations are derived. The amplitude frequency response equation of the system in steady motion is obtained with the multiple scales method. The excitation condition of combination resonances is analyzed. Based on the Lyapunov stability theory, stabilities of steady solutions are analyzed, and critical conditions of stability are also obtained. By numerical calculation, curves of resonance-amplitudes changes with detuning parameters, excitation amplitudes and magnetic intensity in the first and the second order modality are obtained. Time history response plots, phase charts, the Poincare mapping charts and spectrum plots of vibrations are obtained. The effect of electro-magnetic and mechanical parameters for the stabilities of solutions and the bifurcation are further analyzed. Some complex dynamic performances such as period-doubling motion and quasi-period motion are discussed.

Key words: current-conducting thin plate, combination resonance, stability, multiple scales method, magneto-elastic

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals