Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (10): 1291-1298 .doi: https://doi.org/10.1007/s10483-008-1004-4

• Articles • 上一篇    下一篇

一种剪应力作用下ATP调节的血管内皮细胞内Ca2+动力学数学模型

胡徐趣1;向程2;曹玲玲2;许喆3;覃开蓉2   

  1. 1上海大学 上海市应用数学和力学研究所,上海 200072;
    2新加坡国立大学 电子和计算机工程系,新加坡 117576;
    3江苏省无锡油泵油嘴研究所,江苏无锡 214063
  • 收稿日期:2007-08-22 修回日期:2008-09-02 出版日期:2008-10-01 发布日期:2008-10-01
  • 通讯作者: 覃开蓉

A mathematical model for ATP-mediated calcium dynamics in vascular endothelial cells induced by fluid shear stress

HU Xu-qu1;XIANG Cheng2;CAO Ling-ling2;XU Zhe3;QIN Kai-rong2   

  1. 1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University,Shanghai 200072, P. R. China; 2. Department of Electrical and Computer Engineering,National University of Singapore,Singapore 117576, Singapore; 3. Wuxi Fuel Injection Equipment Research Institute, Wuxi 214063, Jiangsu Province, P. R. China
  • Received:2007-08-22 Revised:2008-09-02 Online:2008-10-01 Published:2008-10-01
  • Contact: QIN Kai-rong

摘要: 考虑剪应力诱导血管内皮细胞Ca2+ 内流主要取决于经由ATP(三磷酸腺苷)门控离子通道P2X4 的Ca2+ 内流这一实验事实,本文提出一个修正的剪应力诱导Ca2+ 内流模型,认为Ca2+ 内流量不仅取决于细胞膜内外Ca2+ 浓度差,而且受细胞表面ATP浓度调节。同时利用文献中公布的实验结果,建立了一个新的静态ATP分泌模型,并将其整合到修正后的Ca2+ 内流模型中,建立了一个描述动脉内皮细胞内非线性Ca2+动力学系统。求解整合后动力学系统的控制方程,可获得内皮细胞在剪应力作用下受ATP调节的Ca2+ 响应。结果表明,与文献中其他模型比较,改进后的模型模拟的结果能更真实地反映实验事实。

关键词: 剪应力, Ca2+, 力信号传导, 内皮细胞, ATP, 静态模型, 动态模型

Abstract: In consideration of the mechanism for shear-stress-induced Ca2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stress-induced Ca2+ influx. It is affected both by the Ca2+ gradient across the cell membrane and extracellular ATP concentration on the cell surface. Meanwhile, a new static ATP release model is constructed by using published experimental data. Combining the modified intracellular calcium dynamics model with the new ATP release model, we establish a nonlinear Ca2+ dynamic system in vascular endothelial cells. The ATP-mediated calcium response in vascular endothelial cells subjected to shear stresses is analyzed by solving the governing equations of the integrated dynamic system. Numerical results show that the shear-stress-induced calcium response predicted by the proposed model is more consistent with the experimental observations than that predicted by existing models.

Key words: vascular endothelial cells, static model, ATP (adenosine triphosphate), Ca2+, dynamic model, shear stress, mechanotransduction

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals