Applied Mathematics and Mechanics (English Edition) ›› 2009, Vol. 30 ›› Issue (1): 81-88 .doi: https://doi.org/10.1007/s10483-009-0109-z

• Articles • 上一篇    下一篇

非线性电报方程组的3个双周期正解问题

王方磊;安玉坤   

  1. 南京航空航天大学 理学院,南京 210016
  • 收稿日期:2007-12-10 修回日期:2008-11-12 出版日期:2009-01-01 发布日期:2009-01-01
  • 通讯作者: 王方磊

Three positive doubly periodic solutions of a nonlinear telegraph system

Fang-lei WANG;Yu-kun AN   

  1. Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
  • Received:2007-12-10 Revised:2008-11-12 Online:2009-01-01 Published:2009-01-01
  • Contact: Fang-lei WANG

摘要: 主要考虑了带有双周期边值条件的耦合的非线性电报方程组的至少有3个双周期正解的存在性.首先利用线性电报方程的Green函数和极值原理,将非线性电报方程组解的存在性转化为算子的不动点.其次赋予非线性项一定的增长条件,然后利用有序Banach空间锥上的Leggett_Williams不动点定理来证明算子在锥中至少存在3个不动点,即非线性电报方程组至少3个非负双周期解的存在性.

Abstract: This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals