Applied Mathematics and Mechanics (English Edition) ›› 2007, Vol. 28 ›› Issue (3): 317-317 .doi: https://doi.org/10.1007,10483-007-0305-z

• 论文 • 上一篇    下一篇

Analytical investigation on 3D non-Boussinesq mountain wave drag for wind profiles with vertical variations

唐锦赟;汤杰;王元   

  1. Department of Atmospheric Science, Key Laboratory of Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing 210093, P. R. China
  • 收稿日期:2005-10-18 修回日期:2006-10-31 出版日期:2007-03-25 发布日期:2007-03-25

Analytical investigation on 3D non-Boussinesq mountain wave drag for wind profiles with vertical variations

TANG Jin-yun; TANG Jie; WANG Yuan   

  1. 唐锦赟;汤杰;王元
  • Received:2005-10-18 Revised:2006-10-31 Online:2007-03-25 Published:2007-03-25

摘要: A new analytical model was developed to predict the gravity wave drag (GWD) induced by an isolated 3-dimensional mountain, over which a stratified, non-rotating non-Boussinesq sheared flow is impinged. The model is confined to small amplitude motion and assumes the ambient velocity varying slowly with height. The modified Taylor-Goldstein equation with variable coefficients is solved with a Wentzel-Kramers-Brillouin (WKB) approximation, formally valid at high Richardson numbers. With this WKB solution, generic formulae of second order accuracy, for the GWD and surface pressure perturbation (both for hydrostatic and non-hydrostatic flow) are presented, enabling a rigorous treatment on the effects by vertical variations in wind profiles. In an ideal test to the circular bell-shaped mountain, it was found that when the wind is linearly sheared, that the GWD decreases as the Richardson number decreases. However, the GWD for a forward sheared wind (wind increases with height) decreases always faster than that for the backward sheared wind (wind deceases with height). This difference is evident whenever the model is hydrostatic or not.

关键词: wind shear, Wentzel-Kramers-Brillouin (WKB) approximation, circular bell-shaped mountain, gravity wave drag (GWD)

Abstract: A new analytical model was developed to predict the gravity wave drag (GWD) induced by an isolated 3-dimensional mountain, over which a stratified, non-rotating non-Boussinesq sheared flow is impinged. The model is confined to small amplitude motion and assumes the ambient velocity varying slowly with height. The modified Taylor-Goldstein equation with variable coefficients is solved with a Wentzel-Kramers-Brillouin (WKB) approximation, formally valid at high Richardson numbers. With this WKB solution, generic formulae of second order accuracy, for the GWD and surface pressure perturbation (both for hydrostatic and non-hydrostatic flow) are presented, enabling a rigorous treatment on the effects by vertical variations in wind profiles. In an ideal test to the circular bell-shaped mountain, it was found that when the wind is linearly sheared, that the GWD decreases as the Richardson number decreases. However, the GWD for a forward sheared wind (wind increases with height) decreases always faster than that for the backward sheared wind (wind deceases with height). This difference is evident whenever the model is hydrostatic or not.

Key words: gravity wave drag (GWD), wind shear, Wentzel-Kramers-Brillouin (WKB) approximation, circular bell-shaped mountain

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals