[1] Chen, S. H. Quantitative Analysis Methods for Strongly Nonlinear Vibration (in Chinese), SciencePress, Beijing (2005)
[2] Liu, Z. R. Analytical Methods for Study of Chaos (in Chinese), Science and Technology EducationPress, Shanghai (2002)
[3] Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations ofVector Fields, Springer, New York (1983)
[4] Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York(1990)
[5] Nayfeh, A. H. and Balachandran, B. Applied Nonlinear Dynamics, Analytical, Computational, andExperimental Methods, Wiley, New York (1995)
[6] Li, J. B. and Dai, H. H. On the Study of Singular Nonlinear Traveling Wave Equation: DynamicalSystem Approach (in Chinese), Science Press, Beijing (2005)
[7] Chen, Y. S. and Ding, Q. C-L method and its application to engineering nonlinear dynamicalproblems. Applied Mathematics and Mechanics (English Edition), 22(2), 127-134 (2001) DOI10.1007/BF02437879
[8] Chen, L. Q. Chaos in pertrubation planar non-Hamiltonian integrable systems with slowly-varyingangle parameters. Applied Mathematics and Mechanics (English Edition), 22(8), 1301-1305 (2001)DOI 10.1007/BF02437854
[9] Vakakis, A. F. Exponentially small splittings of manifolds in a rapidly forced Duffing system.Journal of Sound and Vibration, 170(1), 119-129 (1994)
[10] Vakakis, A. F. and Azeez, M. F. A. Analytic approximation of the homoclinic orbits of the Lorenzsystem at σ = 10, b = 8/3, and ρ = 13.926 · · · . Nonlinear Dynamics, 15(3), 245-257 (1998)
[11] Xu, Z., Chan, H. S. Y., and Chung, K. W. Separatrices and limit cycles of strongly nonlinearoscillators by the perturbation-incremental method. Nonlinear Dynamics, 11(3), 213-233 (1996)
[12] Chan, H. S. Y., Chung, K. W., and Xu, Z. Stability and bifurcations of limit cycles by theperturbation-incremental method. Journal of Sound and Vibration, 206(4), 589-604 (1997)
[13] Belhaq, M. Predicting homoclinic bifurcations in planar autonomous systems. Nonlinear Dynam-ics, 18(4), 303-310 (1999)
[14] Belhaq, M. and Lakrad, F. Prediction of homoclinic bifurcation: the elliptic averaging method.Chaos, Solitons and Fractals, 11(10), 2251-2258 (2000)
[15] Belhaq, M., Fiedler, B., and Lakrad, F. Homoclinic connections in strongly self-excited nonlinearoscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method. Nonlinear Dynam-ics, 23(1), 67-86 (2000)
[16] Mikhlin, Y. V. Analytical construction of homoclinic orbits of two-and three-dimensional dynam-ical systems. Journal of Sound and Vibration, 230(5), 971-983 (2000)
[17] Mikhlin, Y. V. and Manucharyan, G. V. Construction of homoclinic and heteroclinic trajectoriesin mechanical systems with several equilibrium positions. Chaos, Solitons and Fractals, 16(2),299-309 (2003)
[18] Manucharyan, G. V. and Mikhlin, Y. V. The construction of homoclinic and heteroclinic orbitsin nonlinear systems. Journal of Applied Mathematics and Mechanics, 69(1), 42-52 (2005)
[19] Cao, H. J., Jiang, Y. Z., and Shan, Y. L. Primary resonant optimal control for nested homoclinicand heteroclinic bifurcations in single-dof nonlinear oscillators. Journal of Sound and Vibration,289(1-2), 229-244 (2006)
[20] Zhang, Q. C., Wang, W., and Li, W. Y. Heteroclinic bifurcations of strongly nonlinear oscillator.Chinese Physics Letters, 25(5), 1905-1907 (2008)
[21] Zhang, Y. M. and Lu, Q. S. Homoclinic bifurcation of strongly nonlinear oscillators by frequency-incremental method. Communications in Nonlinear Science and Numerical Simulation, 8(1), 1-7(2003)
[22] Izydorek, M. and Janczewska, J. Homoclinic solutions for a class of the second order Hamiltoniansystems. Journal of Differential Equations, 219(2), 375-389 (2005)
[23] Izydorek, M. and Janczewska, J. Heteroclinic solutions for a class of the second order Hamiltoniansystems. Journal of Differential Equations, 238(2), 381-393 (2007)
[24] Cao, Y. Y., Chung, K.W., and Xu, J. A novel construction of homoclinic and heteroclinic orbits innonlinear oscillators by a perturbation-incremental method. Nonlinear Dynamics, 64(3), 221-236(2011)
[25] Chen, Y. Y. and Chen, S. H. Homoclinic and heteroclinic solutions of cubic strongly nonlinearautonomous oscillators by the hyperbolic perturbation method. Nonlinear Dynamics, 58(1-2),417-429 (2009)
[26] Chen, S. H., Chen, Y. Y., and Sze, K. Y. A hyperbolic perturbation method for determininghomoclinic solution of certain strongly nonlinear autonomous oscillators. Journal of Sound andVibration, 322(1-2), 381-392 (2009)
[27] Chen, Y. Y., Chen, S. H., and Sze, K. Y. A hyperbolic Lindstedt-Poincaré method for homoclinicmotion of a kind of strongly nonlinear autonomous oscillators. Acta Mechanica Sinica, 25(5),721-729 (2009)
[28] Chen, S. H., Chen, Y. Y., and Sze, K. Y. Homoclinic and heteroclinic solutions of cubic stronglynonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré method. Science Sincia, Tech-nological Science, 53(3), 1-11 (2010)
[29] Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions, Dover, New York (1972)
[30] Merkin, J. H. and Needham, D. J. On infinite period bifurcations with an application to rollwaves. Acta Mechanica, 60(1-2), 1-16 (1986) |