Applied Mathematics and Mechanics (English Edition) ›› 1987, Vol. 8 ›› Issue (9): 829-838.
范西俊
Fan Xi-jun
摘要: The diffusion equation for the configurational distribution function of Hookean dumbbell suspensions with the hydrodynamic interaction (HI) was solved, in terms of Galerkin’s method, in steady state shear flow; and viscosity,first and second normal-stress coefficients and molecular stretching were then calculated. The results indicate that the HI included in a microscopic model of molecules gives rise to a significant effect on the macroscopic properties of Hookean dumbbell suspensions. For example, the viscosity and the first normal stress coefficient, decreasing as shear rate increases, are no longer constant; the second normal-stress coefficient, being negative with small absolute value and shear-rate dependent, is no longer zero; and an additional stretching of dumbbells is yielded by the HI. The viscosity function and the first normal-stress coefficient calculated from this method are in agreement with those predicted from the self-consistent average method qualitatively, while the negative second normal-stress coefficient from the former seems to be more reasonable than the positive one from the latter.