[1] B. D. Liaw and R. W. Little, Theory of bending multilayer sandwich plates, AIAAJournal, 5 (1967), 301-304.
 [2] J. P. Wong and A. E. Salama, Elastic stability of multilayer sandwich plates,Developments in Mechanics, 4 (1968), 289-304.
 [3] J. J. Azar, Bending theory of multilayer orthotropic sandwich plates. AIAA Journal, 6(1968), 2166-2169.
 [4] F. Abdulhadi. Vibration of multicore orthotropic sandwich plates, ASME paper 71-vibr-48, Toronto, Ontario, Canada (1971).
 [5] J. J. Azar, Elastic constants for multilayered sandwich cylinders shells, AIAA Journal, 8(1970), 157-158.v[6] B. D. Liaw. A bending theory for multilayer anisotropic conical shells, AeronauticalQuarrterly, 20 (1969), 61-74.
 [7] S. V. Rajagopal et al., Large-deflection and nonlinear vibration of multilayered sandwichplates, AIAA Journal, 25 (1978), 130-133.
 [8] W. Z. Chien. The intrinsic theory of thin shells and plates, Part III, Application to thinshells, Quart. Appl. Math., 2 (1944), 120-135.
 [9] W. Pietraszkiewiez, Lagrangian description and incremental formulation in the non-lineartheory of thin shells, Int. J. Nonlinear Mech., 19 (1985), 115-139.
 [10] Liu Renhuai and Zhu Jinfu, Nonlmear Theory of Sandwich Shells. Engineering IndustryPress, Bejing (1993). (in Chinese)
 [11] F. John, Estimates for the derivatives of the stresses in a thin shell and interior shellequations, Comm Pure and Appl. Math., 18 (1965), 235-267.
 [12] W. T. Koiter. The intrinsic equations of shell theory with some applications, Mech.Today, 5 (1980), 139-154. |