[1] R. Hill, Aspects of invariance in solid mechanics, Adr. in Appl. Mech., 18, 1 (1978).
[2] Guo Zhongzheng and R. N. Dubey, The “principal axis method”, in non-linear continuum mechanics, Adv. in Mech., 13, 1 (1983). (in Chinese)
[3] Guo Zhongheng, Rates of stretch tensors, J. Elasticity, 14 (1984), 263.
[4] Guo Zhongheng and Liang Haoyun, From principal axis representation to abstract representation, Adr. in Mech., 20, 3 (1990), 303. (in Chinese)
[5] Guo Zhongheng and Liang Haoyun, Abstract representations of spins of principal frames in a continuum, Appl. Math. and Mech. (English Ed.), 12, 1 (1991), 41.
[6] Guo Zhongheng and Liang Haoyun, Recent Development of Principal Axis Method, Lanzhou University Press (1991). (in Chinese)
[7] Guo Zhongheng, Th. Lehmann and Liang Haoyun, The abstract representation of rates of stretch tensors, Acta Mechanica Sinica, 23, 6 (1991).712. (in Chinese)
[8] Guo Zhongheng, Th. Lehmann, Liang Haoyun and Chi-sing Man, Twirl tensors and the tensor equation AX-XA=C, J. Elasticity, 27 (1992), 227.
[9] Guo Zhongheng, Th. Lehmann and Liang Haoyun, Further remarks on stretch tensors, Transactions of the CSME, 15, 2 (1991), 161.
[10] Th. Lehmann, Guo Zhongheng and Liang Haoyun, The conjugacy between Cauchy stress and logarithm of the left stretch tensor, Eur. J. Mech., A/Solids, 10, 4 (1991), 395.
[11] Th. Lehmann and Liang Haoyun, The stress conjugate to logarithmic strain InV.,ZAMM, 73, 12(1993), 357.
[12] Guo Zhongheng, Spin and rotation velocity of the stretching frame in continum, Appl.Math. and Mech. (English Ed.), 12, 9(1988), 1109.
[13] Cheng Li and Kwang Keh-chin, On embeded material derivative and frame spin, Acta Mechanica Sinica, 19(1987), 524. (in Chinese)
[14] A. Hoger and D. E. Carlson, On the derivative of the square root of a tensor and Guo's rate theorem, J. Elasticity. 14, 3 (1984), 329.
[15] M. Wedderburn, On the linear matrix equation, Proc. Edinburgh Math. Soc., 22(1904),49.
[16] D. E. Rutherford, On the solution of the matrix equation AX-XB=C, Nederl. Akad. Wtensch. Proc., Ser. A, 35 (1932), 53.
[17] W. E. Roth, The equations AX-YB=C and AX-XB=C in matrices, Proc. Rarer. Math. Soc., 3(1952), 392.
[18] M. Rosenblum, On the operator equation BX-XA=Q, Duke Math. J., 23 (1956), 263.
[19] Ma Er-chieh, A finite series solution of the matrix equation AX-XB=C, SIAM J. Appl. Math., 14(1966), 490.
[20] R. A. Smith, Matrix equation XA+BX=C, SIAM J. Appl. Math., 16 (1968), 198.
[21] A. Jameson, Solution of the equation AX+XB=C by inversion of a M × M or N × N matrix, SIAM J. Appl. Math., 16 (1968), 1020.
[22] P. Lancaster, Explicit solution of linear matrix equation, SIAM Rev., 12(1970), 544.
[23] P. C. Muller, Solution of the matrix equation AX+XB=-Q and STX-XS=-Q*.SIAM J. Appl. Math., 18 (1970), 682.
[24] V. Kucera, The matrix equation AX+XB=C, SIAM J. Appl. Math., 26 (1974), 15.
[25] A. J. M. Spencer, Theory of invariants, in Continuum Physics, Ed. by A. C. Eringen. Vol. 1,Academic Press, New York (1971), 239-353. |