[1] Lighthill, M. J. On sound generated aerodynamically: I. general theory. Proc. R. Soc. Lond. A., 211(1107), 564-587 (1952)
[2] Lighthill, M. J. On sound generated aerodynamically: II. turbulence as a source of sound. Proc. R. Soc. Lond. A., 211(1148), 1-32 (1954)
[3] Ffowcs Williams, J. E. and Hawkings, D. L. Sound generated by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A., 264(1151), 321-342 (1969)
[4] Tam, C. K. W. Computational aeroacoustics: issues and method. AIAA J., 33(10), 1788-1796 (1995)
[5] Tam, C. K. W. Advances in numerical boundary conditions for computational aeroacoustics. J. Comput. Acoust., 6(4), 377-402 (1998)
[6] Tam, C. K. W. Computational aeroacoustics: an overview of computational challenges and applications. Int. J. Comput. Fluid Dyn., 18(6), 547-567 (2004)
[7] Tam, C. K. W. Computational Aeroacoustics, A Wave Number Approach, Cambridge University Press, New York, 263-265 (2012)
[8] Lele, S. K. Computational aeroacoustics: a review. 35th Aerospace Sciences Meeting and Exhibit, 97-0018, American Institute of Aeronautics and Astronautics, Reno (1997)
[9] Li, X. D., Jiang, M., Gao, J. H., Lin, D. K., Liu, L., and Li, X. Y. Progress and prospective of computational aeroacoustics (in Chinese). Sci. China Phys. Mech., 44(3), 234-248 (2014)
[10] Lele, S. K. Compact finite difference scheme with spectral-like resolution. J. Comput. Phys., 103(1), 16-42 (1992)
[11] Tam, C. K. W. and Webb, J. C. Dispersion-relation-preserving finite difference scheme for computational acoustics. J. Comput. Phys., 107(2), 262-281 (1993)
[12] Kim, J. W. and Lee, D. J. Optimized compact finite difference schemes with maximum resolution. AIAA J., 34(5), 887-893 (1996)
[13] Zhong, X. L. High-order finite-difference schemes for numerical simulation of hypersonic boundarylayer transition. J. Comput. Phys., 144(2), 662-709 (1998)
[14] Zhuang, M. and Chen, R. Optimized upwind dispersion-relation-preserving finite difference scheme for computational aeroacoustics. AIAA J., 35(11), 2146-2148 (1998)
[15] Gaitonde, D. and Shang, J. S. Optimized compact-difference-based finite-volume schemes for linear wave phenomena. J. Comput. Phys., 138(2), 617-643 (1997)
[16] Lee, C. and Seo, Y. A new compact spectral scheme for turbulence simulation. J. Comput. Phys., 183(2), 438-469 (2002)
[17] Bogey, C. and Bailly, C. A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys., 194(1), 194-214 (2004)
[18] Berland, J., Bogey, C., and Marsden, O. High-order low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys., 224(2), 637-662 (2007)
[19] Hu, F. Q., Hussaini, M. Y., and Manthey, J. L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys., 124(1), 177-191 (1996)
[20] Stanescu, D. and Habashi, W. G. 2N-storage low-dissipation and low-dispersion Runge-Kutta schemes for computational aeroacoustics. J. Comput. Phys., 143(2), 674-681 (1998)
[21] Bayliss, A. and Turkel, E. Radiation boundary conditions for wave-like equations. Commun. Pur. Appl. Math., 33(6), 707-725 (1980)
[22] Bayliss, A. and Turkel, E. Far filed boundary conditions for compressible flows. J. Comput. Phys., 48(2), 182-199 (1982)
[23] Hagstrom, T. and Hariharan, S. I. Accurate boundary conditions for exterior problems in gas dynamics. Math. Comput., 51, 581-597 (1988)
[24] Tam, C. K. W. and Dong, Z. Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a non-uniform mean flow. J. Comput. Acoust., 4(2), 175-201 (1996)
[25] Giles, M. B. Nonreflecting boundary conditions for Euler equation calculations. AIAA J., 28(12), 2050-2058 (1990)
[26] Thompson, K.W. Time dependent boundary conditions for hypersonic systems. J. Comput. Phys., 68(1), 1-24 (1987)
[27] Thompson, K. W. Time dependent boundary conditions for hypersonic systems, II. J. Comput. Phys., 89(8), 439-461 (1990)
[28] Poinsot, T. J. and Lele, S. K. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101(7), 104-129 (1992)
[29] Berenger, J. P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2), 185-200 (1994)
[30] Hu, F. Q. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys., 129(1), 201-219 (1996)
[31] Abarbanel, S., Gottlieb, D., and Hesthaven, J. S.Well-posed perfectly matched layers for advective acoustics. J. Comput. Phys., 154(2), 266-283 (1999)
[32] Appelö, D., Hagstrom, T., and Kreiss, G. Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability. SIAM J. Appl. Maths., 67(1), 1-23 (2006)
[33] Hu, F. Q. A stable perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys., 173(2), 455-480 (2001)
[34] Hu, F. Q. A perfectly matched layer absorbing boundary condition for linearized Euler equations with a non-uniform mean-flow. J. Comput. Phys., 208(2), 469-492 (2005)
[35] Ö zyörük, Y., Alpman, E., Ahuja, V., and Long, L. N. Frequency-domain prediction of turbofan noise radiation. J. Sound Vib., 270(4-5), 933-950 (2004)
[36] Li, X. D., Schemel, C., Michel, U., and Thiele, F. H. Azimuthal sound mode propagation in axisymmetric flow ducts. AIAA J., 42(10), 2019-2027 (2004)
[37] Li, X. D., Richter, C., and Thiele, F. Time-domain impedance boundary conditions for surfaces with subsonic mean flows. J. Acoust. Soc. Am., 119(5), 2665-2676 (2006)
[38] Shen, H. and Tam, C. K. W. Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J., 40(1), 33-41 (2002)
[39] Li, X. D. and Gao, J. H. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones. Phys. Fluids, 17(8), 085105 (2005)
[40] Bogey, C. and Bailly, C. Large eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids, 18(6), 065101 (2006)
[41] Bogey, C. and Bailly, C. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model. Int. J. Heat Fluid Flow, 27(4), 603-610 (2006)
[42] Li, X. D. and Gao, J. H. Numerical simulation of the three dimensional screech phenomenon from a circular jet. Phys. Fluids, 20(3), 035101 (2008)
[43] Tam, C. K. W. and Kurbatskii, K. A. Micro fluid dynamics and acoustics of resonant liners. AIAA J., 38(8), 1331-1339 (2000)
[44] Tam, C. K. W. and Ju, H. Numerical simulation of the generation of airfoil tones at a moderate Reynolds number. 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), 2006-2502, American Institute of Aeronautics and Astronautics, Cambridge (2006)
[45] Liu, Y., Vinokur, M., and Wang, Z. J. Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys., 216(2), 780-801 (2006)
[46] Wang, Z. J., Liu, Y., May, G., and Jameson, A. Spectral difference method for unstructured grids II: extension to the Euler equations. J. Sci. Comput., 32(1), 45-71 (2006)
[47] Sun, Y., Wang, Z. J., and Liu, Y. High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys., 2(2), 310-333 (2007)
[48] Gao, J. H., Yang, Z. G., and Li, X. D. An optimized spectral difference method for CAA problems. J. Comput. Phys., 231(14), 4848-4866 (2012)
[49] Gao, J. H. A block interface flux reconstruction method for numerical simulation with high order finite difference scheme. J. Comput. Phys., 241(15), 1-17 (2013)
[50] Fernando, A. M. and Hu, F. Q. A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation. 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008-2874, American Institute of Aeronautics and Astronautics, Vancouver (2008)
[51] Tam, C. K. W. and Kurbastkii, K. A. Multi-size-mesh multi-time-step dispersion relation preserving scheme for multi-scales aeroacoustics problems. Int. J. Comput. Fluid Dyn, 17(2), 119-132 (2003)
[52] Shen, H. and Tam, C. K. W. Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J., 40(1), 33-41 (2002)
[53] Garrec, T. L., Gloerfelt, X., and Corre, C. Multi-size-mesh multi-time-step algorithm for noise computation around an airfoil in curvilinear meshes. 13th AIAA/CEAS Aeroacoustics Confer-ence (28th AIAA Aeroacoustics Conference), 2007-3504, American Institute of Aeronautics and Astronautics, Rome (2007)
[54] Liu, L., Li, X. D., and Hu, F. Q. Non-uniform time-step explicit Runge-Kutta discontinuous Galerkin method for computational aeroacoustics. J. Comput. Phys., 229(19), 6874-6897 (2010)
[55] Liu, L., Li, X. D., and Hu, F. Q. Nonuniform-time-step explicit Rung-Kutta scheme for highorder finite difference method. 16th AIAA/CEAS Aeroacoustics Conference, 2010-3934, American Institute of Aeronautics and Astronautics, Stockholm (2010)
[56] Bauer, M., Dierke, J., and Ewert, R. On the performance of airframe noise prediction on unstructured grids. 8th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012-2148, American Institute of Aeronautics and Astronautics, Colorado (2012)
[57] Lin, D. K., Jiang, M., and Li, X. D. A multi-time-step strategy based on an optimized time interpolation scheme for overset grids. J. Comput. Acoust., 18(2), 131-148 (2010)
[58] Gao, J. H. and Li, X. D. Detached eddy simulation of flow over NACA0012 airfoil at high angle of attack with spectral difference method. 52nd Aerospace Sciences Meeting, 2014-0425, American Institute of Aeronautics and Astronautics, Maryland (2014)
[59] Allampalli, V. Fourth Order Multi-Time-Stepping Adam-Bashforth (MTSAB) Scheme for NASA Glenn Research Center’s Broadband Aeroacoustic Stator Simulation (BASS) Code, Ph. D. dissertation, The University of Toledo, 3-5 (2010)
[60] Hu, F. Q., Li, X. D., and Lin, D. K. Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique. J. Comput. Phys., 227(9), 4398-4424 (2008)
[61] Lin, D. K., Li, X. D., and Hu, F. Q. Absorbing boundary condition for nonlinear Euler equations in primitive variables based on the perfectly matched layer technique. Comput. Fluids, 40(1), 333-337 (2011)
[62] Parrish, S. A. and Hu, F. Q. PML absorbing boundary conditions for the linearized and nonlinear Euler equations in the case of oblique mean flow. Int. J. Numer. Meth. Fluids, 60(5), 565-589 (2009)
[63] Tam, C. K. W. and Auriault, L. Time domain impedance boundary for computational aeroacoustics. AIAA J., 34(5), 917-923 (1996)
[64] Ö zyörük, Y., Long, Y. L., and Jones, M. G. Time-domain numerical simulation of a flow-impedance tube. J. Comput. Phys., 146(1), 29-57 (1998)
[65] Rienstra, S. W. Impedance models in time domain, including the extended Helmholtz resonator model. 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), 2006-2686, American Institute of Aeronautics and Astronautics, Cambridge (2006)
[66] Reymen, Y., Baelmans, M., and Desmet, W. Efficient implementation of Tam and Auriault’s time-domain impedance boundary condition. AIAA J., 46(9), 2368-2376 (2008)
[67] Li, X. Y., Li, X. D., and Tam, C. K.W. An improved multi-pole broadband time domain impedance boundary condition. AIAA J., 50(4), 980-984 (2012)
[68] Xu, J., Li, X. D., and Guo, Y. P. Nonlinear absorbing characteristic of micro resonator under high sound pressure level. 20th AIAA/CEAS Aeroacoustics Conference, 2014-3353, American Institute of Aeronautics and Astronautics, Atlanta (2014)
[69] Wang, M., Freund, J. B., and Lele, S. K. Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech., 38, 483-512 (2006)
[70] He, G. W., Rubinstein, R., and Wang, L. P. Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids, 14(7), 2186-2193 (2002)
[71] He, G.W., Wang, M., and Lele, S. K. On the computation of space-time correlations by large-eddy simulation. Phys. Fluids, 16(11), 3859-3867 (2004)
[72] LaBryer, A., Attar, P. J., and Vedula, P. Optimal spatiotemporal reduced order modeling, part I: proposed framework. Comput. Mech., 52(2), 417-431 (2013)
[73] Seid, K. H., Gilka, G., Leung, R. C. K., and Thiele, F. A Comparison study of reduced order models for aeroacoustics applications. 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012-2072, American Institute of Aeronautics and Astronautics, Colorado (2012) |