[1] Di Bernardo, M., Budd, C. J., and Champneys, A. R. Normal form maps for grazing bifurcations in n-dimensional piecewise smooth dynamical systems. Physica D, 160, 222-254(2001)
[2] Halse, C., Homer, M., and di Bernardo, M. C-bifurcations and period-adding in one-dimensional piecewise smooth maps. Chaos, Solitons & Fractals, 18, 953-976(2003)
[3] Kumar, A., Banerjee, S., and Lathrop, D. P. Dynamics of a piecewise smooth map with sigularity. Physics Letters A, 337, 87-92(2005)
[4] Sushko, I., Agliari, A., and Gardini, L. Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps:border collision bifurcation curves. Chaos, Solitons & Fractals, 29, 756-770(2006)
[5] Zhusubaliyev, Z. T. and Mosekilde, E. Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems, World Scientific, Singapore (2003)
[6] Banerjee, S. and Grebogi, C. Border collision bifurcations in two-dimensional piece-wise smooth maps. Physical Review E, 59, 4052-4061(1999)
[7] Banerjee, S., Karthik, M. S., Yuan, G. H., and Yorke, J. A. Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits. IEEE Transactions on Circuits and Systems-I, 47, 389-394(2000)
[8] Banerjee, S., Ranjan, P., and Grebogi, C. Bifurcations in two-dimensional piece-wise smooth mapstheory and applications in switching circuits. IEEE Transactions on Circuits and Systems-I, 47, 633-643(2000)
[9] Qin, Z. Y., Yang, J. C., Banerjee, S., and Jiang, G. R. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete and Continuous Dynamical System-Series B, 16, 547-567(2011)
[10] Prunaret, D. F., Chargé, P., and Gardini, L. Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map. Communications in Nonlinear Science and Numerical Simulation, 16, 916-927(2011)
[11] Tramontana, F. and Gardini, L. Border collision bifurcations in discontinuous one-dimensional linear-hyperbolic maps. Communications in Nonlinear Science and Numerical Simulation, 16, 1414-1423(2011)
[12] Gardini, L., Tramontana, F., and Banerjee, S. Bifurcation analysis of an inductorless chaos generator using 1D piecewise smooth map. Mathematics and Computers in Simulation, 95, 137-145(2014)
[13] Fu, S. H., Lu, Q. S., and Meng, X. Y. New discontinuity-induced bifurcations in Chua's circuit. International Journal of Bifurcation and Chaos, 25, 1550090(2015)
[14] Fu, S. H., Meng, X. Y., and Lu, Q. S. Stability and boundary equilibrium bifurcations of modified Chua's circuit with smooth degree of 3. Applied Mathematics and Mechanics (English Edition), 36(12), 1639-1650(2015) DOI 10.1007/s10483-015-2009-6
[15] Nusse, H. E. and Yorke, J. A. Border-collision bifurcations including "period two to period three" for piecewise smooth maps. Physica D, 57, 39-57(1992)
[16] Nusse, H. E. and Yorke, J. A. Border-collision bifurcations for piecewise smooth one dimensional maps. International Journal of Bifurcation and Chaos, 5, 189-207(1995)
[17] Di Bernardo, M., Feigin, M. I., Hogan, S. J., and Homer, M. E. Local analysis of C-bifurcation in n-dimensional piecewise smooth dynamical systems. Chaos, Solitons & Fractals, 10, 1881-1908(1999)
[18] Leine, R. I. and Nijmeijer, H. Dynamics and bifurcations of non-smooth mechanical systems. Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin (2004)
[19] Rössler, O. E. An equation for continuous chaos. Physics Letters A, 57, 397-398(1976)
[20] Linz, S. J. Nonlinear dynamical models and jerky motion. American Journal of Physics, 65, 523-525(1997)
[21] Sprott, J. C. Simple chaotic systems and circuits. American Journal of Physics, 68, 758-763(2000)
[22] Sprott, J. C. A new class of chaotic circuit. Physics Letters A, 266, 19-23(2000) |