[1] Giannakopoulos, A. W., Aravas, N., and Vardoulakis, P. A. A structural gradient theory of torsion, the effects of pretwist, and the tension of pre-twisted DNA. International Journal of Solids and Structures, 50, 3922-3933(2013)
[2] Ho, S. H. and Chen, C. K. Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform. International Journal of Mechanical Sciences, 48, 1323-1331(2006)
[3] Leung, A. Y. T. and Fan, J. Natural vibration of pre-twisted shear deformable beam systems subject to multiple kinds of initial stresses. Journal of Sound and Vibration, 329, 1901-1923(2010)
[4] Yu, A. M., Yang, X. G., and Nie, G. H. Generalized coordinate for warping of naturally curved and twisted beams with general cross-sectional shapes. International Journal of Solids and Structures, 43, 2853-2876(2006)
[5] Wang, Q. and Yu, W. A refined model for thermo elastic analysis of initially curved and twisted composite beams. Engineering Structures, 48, 233-244(2013)
[6] Mustapha, K. B. and Zhong, Z. W. Wave propagation characteristics of a twisted micro scale beam. International Journal of Engineering Science, 53, 46-57(2012)
[7] Cšarek, P., Saje, M., and Zupan, D. Kinematically exact curved and twisted strain-based beam. International Journal of Solids and Structures, 49, 1802-1817(2012)
[8] Chen, W. R. Effect of local Kelvin-Voigt damping on eigen frequencies of cantilevered twisted Timoshenko beams. Procedia Engineering, 79, 160-165(2014)
[9] Subrahmanyam, K. B. and Rao, J. S. Coupled bending-bending vibrations of pre-twisted tapered cantilever beams treated by the Reissner method. Journal of Sound and Vibration, 82, 577-592(1982)
[10] Chen, W. R. On the vibration and stability of spinning axially loaded pre-twisted Timoshenko beams. Finite Elements in Analysis and Design, 46, 1037-1047(2010)
[11] Sinha, S. K. and Turner, K. E. Natural frequencies of a pre-twisted blade in a centrifugal force field. Journal of Sound and Vibration, 330, 2655-2681(2011)
[12] Chen, W. R., Hsin, S. W., and Chu, T. H. Vibration analysis of twisted Timoshenko beams with internal Kelvin-Voigt damping. Procedia Engineering, 67, 525-532(2013)
[13] Banerjee, J. R. Free vibration analysis of a twisted beam using the dynamic stiffness method. International Journal of Solids Structures, 38, 6703-6722(2001)
[14] Sabuncu, M. and Evran, K. The dynamic stability of a rotating pre-twisted asymmetric crosssection Timoshenko beam subjected to lateral parametric excitation. International Journal of Mechanical Sciences, 48, 878-888(2006)
[15] Mohammadimehr, M., Rousta-Navi, B., and Ghorbanpour-Arani, A. Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method. Composite Structures, 131, 654-671(2015)
[16] Wang, C. M., Zhang, Y. Y., and He, X. Q. Vibration of nonlocal Timoshenko beams. Nanotechnology, 18, 9-18(2007)
[17] Mohammadimehr, M., Rousta-Navi, B., and Ghorbanpour-Arani, A. Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT. Composite Part B:Engineering, 87, 132-148(2016)
[18] Ghorbanpour-Arani, A., Kolahchi, R., and Vossough, H. Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory. Physica B, 407, 4281-4286(2012)
[19] Narendar, S., Gupta, S. S., and Gopalakrishnan, S. Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Applied Mathematical Modelling, 36, 4529-4538(2012)
[20] Aydogdu, M. Longitudinal wave propagation in multi-walled carbon nanotubes. Composite Structures, 107, 578-584(2014)
[21] Wang, L. Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Computational Materials Science, 49, 761-766(2010)
[22] Liew, K. M. and Wang, Q. Analysis of wave propagation in carbon nanotubes via elastic shell theories. International Journal of Engineering Science, 45, 227-241(2007)
[23] Mohammadimehr, M., Mohammadimehr, M. A., and Dashti, P. Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method (DQM). Applied Mathematics and Mechanics (English Edition), 37(4), 529-554(2016) DOI 10.1007/s10483-016-2045-9
[24] Wang, B., Zhou, S. H., Zhao, J., and Chen, X. A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. European Journal of Mechanics A/Solids, 30, 517-524(2011)
[25] Paliwal, D. N., Pendey, R. K., and Nath, T. Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations. International Journal of Pressure Vessels and Piping, 69, 79-89(1996)
[26] Reddy J. N. Energy Principles and Variational Methods in Applied Mechanic, John Wiley and Sons, New York (2002)
[27] Li, X. Y., Zhao, X., and Li, Y. H. Green's functions of the forced vibration of Timoshenko beams with damping effect. Journal of Sound and Vibration, 333, 1781-1795(2014) |