[1] Skutch, R. Uber die bewegung eines gespannten fadens, weicher gezwungen ist durch zwei feste punkte, mit einer constanten geschwindigkeit zu gehen, und zwischen denselben in transversal-schwingungen von gerlinger amplitude versetzt wird. Annalen der Physik und Chemie, 61, 190-195(1897)
[2] Sack, R. A. Transverse oscillations in traveling strings. British Journal of Applied Physics, 5, 224-226(1954)
[3] Mote, C. D., Jr. Dynamic stability of axially moving materials. The Shock and Vibration Digest, 4, 2-11(1972)
[4] Miranker, W. L. The wave equation in a medium in motion. IBM Journal of Research and Development, 4, 36-42(1960)
[5] Ulsoy, A.G. and Mote, C. D., Jr. Vibration of wide band saw blades. Journal of Engineering for Industry, 104, 71-78(1982)
[6] Lin, C. C. and Mote, C. D., Jr. Equilibrium displacement and stress distribution in a two-dimensional axially moving web under transverse loading. Journal of Applied Mechanics, 62, 772-779(1995)
[7] Lengoc, L. and McCallion, H.Wide band saw blade under cutting conditions I:vibration of a plate moving in its plane while subjected to tangential edge loading. Journal of Sound and Vibration, 186, 125-142(1995)
[8] Lengoc, L. and McCallion, H. Wide bandsaw blade under cutting conditions Ⅱ:stability of a plate moving in its plane while subjected to parametric excitation. Journal of Sound and Vibration, 186, 143-162(1995)
[9] Lengoc, L. and McCallion, H. Wide bandsaw blade under cutting conditions Ⅲ:stability of a plate moving in its plane while subjected to non-conservative cutting forces. Journal of Sound and Vibration, 186, 163-179(1995)
[10] Lin, C. C. Stability and vibration characteristics of axially moving plates. International Journal of Solids and Structures, 34, 3179-3190(1997)
[11] Lin, C. C. Finite width effects on the critical speed of axially moving materials. Journal of Vibration and Acoustics, 120, 633-634(1998)
[12] Wang, X. Numerical analysis of moving orthotropic thin plates. Computers and Structures, 70, 467-486(1999)
[13] Luo, Z. and Hutton, S. G. Formulation of a three-node traveling triangular plate element subjected to gyroscopic and in-plane forces. Computers and Structures, 80, 1935-1944(2002)
[14] Kim, J., Cho, J., Lee, U., and Park, S. Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Composite Structures, 81, 2011-2020(2003)
[15] Luo, A. C. J. and Hamidzadeh, H. R. Equilibrium and buckling stability for axially traveling plates. Communications in Nonlinear Science and Numerical Simulation, 9, 343-360(2004)
[16] Hatami, S., Azhari, M., and Saadatpour, M. M. Stability and vibration of elastically supported, axially moving orthotropic plates. Iranian Journal of Science and Technology, 30, 427-446(2006)
[17] Hatami, S., Azhari, M., and Saadatpour, M. M. Exact and semi-analytical finite strip for vibration and dynamic stability of traveling plates with intermediate supports. Advances in Structural Engineering, 9, 639-651(2006)
[18] Hatami, S., Azhari, M., and Saadatpour, M. M. Free vibration of moving laminated composite plates. Composite Structures, 80, 609-620(2007)
[19] Tang, Y. Q. and Chen, L. Q. Nonlinear free transverse vibrations of in-plane moving plates:without and with internal resonances. Journal of Sound and Vibration, 330, 110-126(2011)
[20] Tang, Y. Q. and Chen, L. Q. Natural frequencies, modes and critical speeds of in-plane moving plates. Advances in Vibration Engineering, 11, 229-244(2012)
[21] Hu, Y. D. and Zhang, J. Z. Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field. Applied Mathematics and Mechanics (English Edition), 34, 1405-1420(2013) DOI 10.1007/s10483-013-1755-8
[22] Tang, Y. Q., Zhang, D. B., and Gao, J. M. Vibration characteristic analysis and numerical confirmation of an axially moving plate with viscous damping. Journal of Vibration and Control (2015) DOI 10.1177/1077546315586311
[23] Marynowski, K. Two-dimensional rheological element in modelling of axially moving viscoelastic web. European Journal of Mechanics-A/Solids, 25, 729-744(2006)
[24] Zhou, Y. F. and Wang, Z. M. Vibration of axially moving viscoelastic plate with parabolically varying thickness. Journal of Sound and Vibration, 316, 198-210(2008)
[25] Hatami, S., Ronagh, H. R., and Azhari, M. Exact free vibration analysis of axially moving viscoelastic plates. Computers and Structures, 86, 1736-1746(2008)
[26] Zhou, Y. F. and Wang, Z. M. Dynamic behaviors of axially moving viscoelastic plate with varying thickness. Journal of Sound and Vibration, 22, 276-281(2009)
[27] Marynowski, K. Free vibration analysis of the axially moving Levy-type viscoelastic plate. European Journal of Mechanics-A/Solids, 29, 879-886(2010)
[28] Tang, Y. Q. and Chen, L. Q. Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3:1 internal resonance. Nonlinear Dynamics, 69, 159-172(2012)
[29] Tang, Y. Q. and Chen, L. Q. Parametric and internal resonances of in-plane accelerating viscoelastic plates. Acta Mechanica, 223, 415-431(2012)
[30] Lee, H. P. and Ng, T. Y. Dynamic stability of a moving rectangular plate subject to in-plane acceleration and force perturbations. Applied Acoustics, 45, 47-59(1995)
[31] Yang, X. D., Chen, L. Q., and Zu, J. W. Vibrations and stability of an axially moving rectangular composite plate. Journal of Applied Mechanics, 78, 011018(2011)
[32] Tang, Y. Q. and Chen, L. Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed. European Journal of Mechanics-A/Solids, 37, 106-121(2013)
[33] Chen, L. Q. and Tang, Y. Q. Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Journal of Vibration and Acoustics, 134, 11008(2012)
[34] Chen, L. Q. and Tang, Y. Q. Combination and principal parametric resonances of axially accelerating viscoelastic beams:recognition of longitudinally varying tensions. Journal of Sound and Vibration, 330, 5598-5614(2011)
[35] Tang, Y. Q., Chen, L. Q., Zhang, H. J., and Yang, S. P. Stability of axially accelerating viscoelastic Timoshenko beams:recognition of longitudinally varying tensions. Mechanism and Machine Theory, 62, 31-50(2013)
[36] Chen, L. Q., Tang, Y. Q., and Zu, J. W. Nonlinear transverse vibration of axially accelerating strings with exact internal resonances and longitudinally varying tensions. Nonlinear Dynamics, 76, 1443-1468(2014)
[37] Ding, H. and Zu, J. W. Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness. ASME Journal of Vibration and Acoustic, 136, 63-69(2014)
[38] Ding, H. Periodic responses of a pulley-belt system with one-way clutch under inertia excitation. Journal of Sound and Vibration, 353, 308-326(2015)
[39] Yan, Q. Y., Ding, H., and Chen, L. Q. Nonlinear dynamics of an axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 36, 971-984(2015) DOI 10.1007/s10483-015-1966-7
[40] Mote, C. D., Jr. A study of band saw vibrations. Journal of the Franklin Institute, 276, 430-444(1965)
[41] Tang, Y. Q., Zhang, D. B., and Gao, J. M. Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dynamics, 83, 401-418(2015) |