[1] Bishop, R. F., Hill, R., and Mott, N. F. The theory of indentation and hardness. Proceedings of the Royal Society of London A, 57(3), 147-159(1945)
[2] Alekseevskii, V. P. Penetration of a rod into a target at high velocity. Combustion, Explosion, and Shock Waves, 2(2), 63-66(1966)
[3] Tate, A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids, 15(6), 387-399(1967)
[4] Backman, M. E. and Goldsmith, W. The mechanics of penetration of projectiles into targets. International Journal of Impact Engineering, 16(1), 1-99(1978)
[5] Anderson, C. E. and Bodner, S. R. Ballistic impact:the status of analytical and numerical modeling. International Journal of Impact Engineering, 7(1), 9-35(1988)
[6] Goldsmith, W. Non-ideal projectile impact on targets. International Journal of Impact Engineering, 22(2-3), 95-395(1999)
[7] Ben-Dor, G., Dubinsky, A., and Elperin, T. Ballistic impact:recent advances in analytical modeling of plate penetration dynamics-a review. Applied Mechanics Reviews, 58(6), 355-371(2005)
[8] Forrestal, M. J., Altman, B. S., Cargile, J. D., and Hanchak, S. J. An empirical equation for penetration of ogive-nose projectiles into concrete targets. International Journal of Impact Engineering, 15(4), 395-405(1994)
[9] Forrestal, M. J., Frew, D. J., and Hanchak, S. J. Penetration of grout and concrete targets with ogive-nose steel projectiles. International Journal of Impact Engineering, 18(5), 465-476(1996)
[10] Frew, D. J., Forrestal, M. J., and Hanchak, S. J. Penetration experiments with limestone targets and ogive-nose steel projectiles. Journal of Applied Mechanics, 67(4), 841-845(2000)
[11] Warren, T. L. and Poormon, K. L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. International Journal of Impact Engineering, 25(10), 993-1022(2001)
[12] Warren, T. L., Hanchak, S. J., and Poormon, K. L. Penetration of limestone targets by ogivenosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. International Journal of Impact Engineering, 30(10), 1307-1331(2004)
[13] Charles, E., Anderson, J., and John, P. R. A penetration model for metallic targets based on experimental data. International Journal of Impact Engineering, 80, 24-35(2015)
[14] Forrestal, M. J., Longcope, D. B., and Norwood, F. R. A model to estimate forces on conical penetrators into dry porous rock. ASME Journal of Applied Mechanics, 48(1), 25-29(1981)
[15] Forrestal, M. J., Norwood, F. R., and Longcope, D. B. Penetration into targets described by locked hydrostats and shear strength. International Journal of Solids Structure, 17(9), 915-924(1981)
[16] Forrestal, M. J. and Luk, V. K. Penetration into soil targets. International Journal of Impact Engineering, 12(3), 427-444(1992)
[17] Forrestal, M. J. and Tzou, D. Y. A spherical cavity-expansion penetration model for concrete targets. International Journal of Solids Structure, 34(31-32), 4127-4146(1997)
[18] Zhen, M., Jiang, Z. G., Song, D. Y., and Liu, F. Analytical solutions for finite cylindrical dynamic cavity expansion in compressible elastic-plastic materials. Applied Mathematics and Mechanics (English Edition), 35(8), 1039-1050(2014) DOI 10.1007/s10483-014-1842-7
[19] Chen, X. W. and Li, Q. M. Deep penetration of a non-deformable projectile with different geometrical characteristics. International Journal of Impact Engineering, 27(6), 619-637(2002)
[20] Chen, X. W., Fan, S. C., and Li, Q. M. Oblique and normal perforation of concrete targets by a rigid projectile. International Journal of Impact Engineering, 30(6), 617-637(2004)
[21] Chen, X. W., Li, X. L., Huang, F. L., Wu, H. J., and Chen, Y. Z. Normal perforation of reinforced concrete target by rigid projectile. International Journal of Impact Engineering, 35(10), 1119-1129(2008)
[22] Bernard, R. S. and Craighton, D. C. Projectile Penetration in Soil and Rock:Analysis for Nonnormal Impact, U. S. Army Engineering Waterways Experiment Station, Vicksburg (1979)
[23] Fang, Q. and Zhang, J. H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble. International Journal of Impact Engineering, 63, 118-128(2014)
[24] Liu, L., Fan, Y. R., Li, W., and Liu, H. W. Cavity dynamics and drag force of high speed penetration of rigid spheres into 10wt gelatin. International Journal of Impact Engineering, 50, 68-75(2012)
[25] He, T. A Study of the Penetration of Projectiles into Targets Made of Various Materials (in Chinese), Ph. D. dissertation, University of Science and Technology of China, Hefei, 74-75(2007) |