[1] May, R. M. Will a large complex system be stable. nature, 238, 413-414(1972)
[2] May, R. M. Biological populations with nonoverlapping generations:stable point, stable cycles, and chaos. Science, 186, 645-647(1974)
[3] De Ruiter, P. C., Neutel, A. M., and Moorre, J. C. Energetics, patterns of interaction strengths and stability in real ecosystems. Science, 269, 1257-1260(1995)
[4] Griffiths, J., Lowrie, D., and Williams, J. An age-structured model for the AIDS epidemic. European Journal of Operational Research, 124(1), 1-24(2000)
[5] Hyman, J. M., Li, J., and Stanley, E. A. The differential infectivity and staged progression models for the transmission of HIV. Mathematical Biosciences, 155(1), 77-109(1999)
[6] Hethcote, H. W. and Vanark, J. W. Modelling HIV Transmission and AIDS in the United States, Springer-Verlag, Berlin (1992)
[7] Liu, M. X., Ruan, Y. H., Han, L. T., and Zhou, Y. C. The summary of dynamic models for HIV transmission. Journal of Biomathematics, 19(5), 551-560(2004)
[8] Barbu, L. and Morosanu, G. Singularly Perturbed Boundary-Value Problems, Birkhauserm Verlag AG, Basel (2007)
[9] De Jager, E. M. and Jiang, F. R. The Theory of Singular Perturbation, North-Holland Publishing Co., Amsterdam (1996)
[10] Suzuki, R. Asymptotic behavior of solutions a semilinear heat equation with localized reaction. Advances in Differential Equations, 159(3/4), 283-314(2010)
[11] Ramos, M. On singular perturbation of superlinear elliptic systems. Journal of Mathematical Analysis and Applications, 352(1), 246-258(2009)
[12] D'Aprile, T. and Pistoia, A. On the existence of some new positive interior spike solutions to a semilinear Nuumann problem. Journal of Differential Equations, 248(3), 556-573(2010)
[13] Kellogg, R. B. and Kopteva, N. A singularly perturbed semilinear reaction-diffusion problem in polygonal domain. Journal of Differential Equations, 248(1), 184-208(2010)
[14] Mo, J. Q. Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China, Ser A, 32(11), 1306-1315(1989)
[15] Mo, J. Q. and Lin, W. T. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations. Journal of Systems Science and Complexity, 20(1), 119-128(2008)
[16] Mo, J. Q. and Wang, H. Nonlinear singularly perturbed approximate solution for generalized Lotke-Volterra ecological model. Acta Ecologica Sinica, 27(10), 4366-4370(2007)
[17] Mo, J. Q. Yao, J. S., and Wang, H. The nonlinear species group singularly perturbed Robin problems for reaction diffusion system. Journal of Biomatheatics, 22(2), 193-199(2007)
[18] Mo, J. Q., Chen, X. F., and Xie, F. Asymptotic solution for a nonlinear singularly perturbed population problem. Journal of Biomatheatics, 22(4), 577-582(2007)
[19] Mo, J. Q. and Zhou, K. R. Singular perturbation for nonlinear species group reaction diffusion systems. Journal of Biomatheatics, 21(4), 481-488(2006)
[20] Mo, J. Q., Zhang, W. J., and He, M. Homotopic mapping solving method for dynamic study of HIV virus transmission (in Chinese). Mathematical Applicata, 20(3), 441-445(2007)
[21] Mo, J. Q. and Yao, J. S. Asymptotic solution to model for a class of virus transmission. Annals of Differential Equations, 26(4), 436-441(2010)
[22] Quyang, C., Yao, J. S., Shi, L. F., and Mo, J. Q. Solitary wave solution for a class of dusty plasma (in Chinese). Acta Physica Sinica, 63(11), 110203(2014)
[23] Ouyang, C., Cheng, L. H., and Mo, J. Q. Solving a class of burning disturbed problem with shock layer. Chinese Physics B, 21(5), 050203(2012)
[24] Ouyang, C., Lin, W. T., Cheng, R. J., and Mo, J. Q. A class of asymptotic solution of El Niño sea-air time delay oscillator (in Chinese). Acta Physica Sinica, 62, 060201(2013)
[25] Liao, S. J. Beyond Perturbation-Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton (2003)
[26] Liao, S. J. Beyond Perturbation:Introduction to the Homotopy Analysis Method, CRC Press, New York (2004)
[27] Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg (2012) |