[1] Yao, R., Tang, X. Q., Wang, J. S., and Huang, P. Dimensional optimization design of the fourcable-driven parallel manipulator in FAST. IEEE/ASME Transactions on Mechatronics, 15, 932-941(2010) [2] Riemenschneider, J., Mahrholz, T., Mosch, J., Monner, H. P., and Melcher, J. System response of nanotube based actuators. Mechanics of Advanced Materials and Structures, 14, 57-65(2007) [3] You, Z. and Pellegrino, S. Cable-stiffened pantographic deployable structures Ⅱ:mesh reflector. AIAA Journal, 35, 1348-1355(1997) [4] Smith, T., Lee, B., Semler, D., and Chae, D. A large S-band antenna for a mobile satellite. Space 2004 Conference and Exhibit, American Institute of Aeronautics and Astronautics, San Diego (2004) [5] Kimiaghalam, B., Homaifar, A., and Bikdash, M. Pendulation suppression of a shipboard crane using fuzzy controller. American Control Conference, Institute of Electrical and Electronic Engineers, San Diego (1999) [6] Irvine, H. M. Cable Structures, MIT Press, Cambridge (1981) [7] Li, Y., Feng, X. Q., Cao, Y. P., and Gao, H. J. A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. International Journal of Solids and Structures, 47, 1888-1898(2010) [8] Zhang, L. Y., Zhao, H. P., and Feng, X. Q. Constructing large-scale tensegrity structures with bar-bar connection using prismatic elementary cells. Archive of Applied Mechanics, 85, 383-394(2015) [9] Zhang, L. Y., Li, Y., Cao, Y. P., and Feng, X. Q. Stiffness matrix based form-finding method of tensegrity structures. Engineering Structures, 58, 36-48(2014) [10] Li, B., Li, Y. H., and Ying, X. G. Dynamic modeling and simulation of flexible cable with large sag. Applied Mathematics and Mechanics (English Edition), 21, 707-714(2000) DOI 10.1007/BF02460190 [11] Yang, C. J. and Ren, G. X. Dynamic simulation of multifold deployable rings. AIAA Journal, 52, 1555-1559(2014) [12] Ma, Y. H., He, M. H., Shen, W. H., and Ren, G. X. A planar shock isolation system with highstatic-low-dynamic-stiffness characteristic based on cables. Journal of Sound and Vibration, 358, 267-284(2015) [13] Kamman, J. W. and Huston, R. L. Modeling of variable length towed and tethered cable systems. Journal of Guidance, Control, and Dynamics, 22, 602-608(1999) [14] Kamman, J. W. and Huston, R. L. Multibody dynamics modeling of variable length cable systems. Multibody System Dynamics, 5, 211-221(2001) [15] Williams, P. and Trivailo, P. Dynamics of circularly towed aerial cable systems Ⅱ:transitional flight and deployment control. Journal of Guidance, Control, and Dynamics, 30, 766-779(2007) [16] Williams, P., Lansdorp, B., and Ockels, W. Modeling and control of a kite on a variable length flexible inelastic tether. AIAA Modeling and Simulation Technologies Conference and Exhibit, American Institute of Aeronautics and Astronautics, Hilton Head (2007) [17] Du, J. L., Cui, C. Z., Bao, H., and Qiu, Y. Y. Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. Journal of Computational and Nonlinear Dynamics, 10, 011013(2015) [18] Yu, L., Zhao, Z. H., Tang, J. L., and Ren, G. X. Integration of absolute nodal elements into multibody system. Nonlinear Dynamics, 62, 931-943(2010) [19] Seo, J. H., Sugiyama, H., and Shabana, A. A. Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dynamics, 42, 199-215(2005) [20] Sugiyama, H., Escalona, J. L., and Shabana, A. A. Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dynamics, 31, 167-195(2003) [21] Lee, S. H., Park, T. W., Seo, J. H., Yoon, J. W., and Jun, K. J. The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody System Dynamics, 20, 223-237(2008) [22] Belytschko, T., Liu, W. K., Moran, B., and Elkhodary, K. I. Nonlinear Finite Elements for Continua and Structures, 2nd ed., John Wiley and Sons, Chichester (2014) [23] Hong, D. F. and Ren, G. X. A modeling of sliding joint on one-dimensional flexible medium. Multibody System Dynamics, 26, 91-106(2011) [24] Hong, D. F., Tang, J. L., and Ren, G. X. Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation. Journal of Fluids and Structures, 27, 1137-1148(2011) [25] Ma, Y. H., Hong, D. F., Cheng, Z. B., Cao, Y. F., and Ren, G. X. A multibody dynamic model of the drilling system with drilling fluid. Advances in Mechanical Engineering, 8, 1-16(2016) [26] Ferdinand, P., Beer, E., Russell, J., and David, F. M. Vector Mechanics for Engineers:Statics, 10th ed., McGraw-Hill, New York, 449-451(2013) [27] Hu, Z. D. and Hong, J. Z. Modeling and analysis of a coupled rigid-flexible system. Applied Mathematics and Mechanics (English Edition), 20, 1167-1174(1999) DOI 10.1007/BF02460335 [28] Hairer, E. and Wanner, G. Solving Ordinary Differential Equations Ⅱ:Stiff and DifferentialAlgebraic Problems, 2nd ed., Springer, Berlin (2010) [29] Petzold, L. and Lötstedt, P. Numerical solution of nonlinear differential equations with algebraic constraints Ⅱ:practical implications. SIAM Journal on Scientific and Statistical Computing, 7, 720-733(1986) [30] Cao, D. Z., Qiang, H. F., and Ren, G. X. Parallel computing studies of flexible multibody system dynamics using OpenMP and Pardiso (in Chinese). Journal of Tsinghua University (Science and Technology), 52, 1643-1649(2012) |