[1] Frenkel, D. and Smit, B. Understanding Molecular Simulation:From Algorithms to Applications, Academic Press, New York (2001) [2] Tuckerman, M. Statistical Mechanics:Theory and Molecular Simulation, Oxford University Press, Oxford (2010) [3] Leimkuhler, B. and Matthews, C. Molecular Dynamics:With Deterministic and Stochastic Numerical Methods, Springer, New York (2015) [4] Español, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67, 026705(2003) [5] Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, 1013-1024(1977) [6] Gingold, R. A. and Monaghan, J. J. Smoothed particle hydrodynamics——theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375-389(1977) [7] Avalos, J. B. and Mackie, A. D. Dissipative particle dynamics with energy conservation. Europhysics Letters, 40, 141-146(1997) [8] Español, P. Dissipative particle dynamics with energy conservation. Europhysics Letters, 40, 631-636(1997) [9] Faure, G., Maillet, J. B., Roussel, J., and Stoltz, G. Size consistency in smoothed dissipative particle dynamics. Physical Review E, 94, 043305(2016) [10] Vázquez-Quesada, A., Ellero, M., and Español, P. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. Journal of Chemical Physics, 130, 034901(2009) [11] Litvinov, S., Ellero, M., Hu, X., and Adams, N. A. Self-diffusion coefficient in smoothed dissipative particle dynamics. Journal of Chemical Physics, 130, 021101(2009) [12] Bian, X., Litvinov, S., Qian, R., Ellero, M., and Adams, N. A. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids, 24, 012002(2012) [13] Litvinov, S., Ellero, M., Hu, X., and Adams, N. A. Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 77, 066703(2008) [14] Petsev, N. D., Leal, L. G., and Shell, M. S. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics. Journal of Chemical Physics, 144, 084115(2016) [15] Trotter, H. F. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10, 545-551(1959) [16] Strang, G. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5, 506-517(1968) [17] Verlet, L. Computer "experiments" on classical fluids I:thermodynamical properties of LennardJones molecules. Physical Review, 159, 98-103(1967) [18] Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19, 155-160(1992) [19] Stoltz, G. A reduced model for shock and detonation waves I:the inert case. Europhysics Letters, 76, 849-855(2006) [20] Shardlow, T. Splitting for dissipative particle dynamics. SIAM Journal on Scientific Computing, 24, 1267-1282(2003) [21] Lísal, M., Brennan, J. K., and Avalos, J. B. Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. Journal of Chemical Physics, 135, 204105(2011) [22] Larentzos, J. P., Brennan, J. K., Moore, J. D., Lísal, M., and Mattson, W. D. Parallel implementation of isothermal and isoenergetic dissipative particle dynamics using Shardlow-like splitting algorithms. Computer Physics Communications, 185, 1987-1998(2014) [23] Homman, A. A., Maillet, J. B., Roussel, J., and Stoltz, G. New parallelizable schemes for integrating the dissipative particle dynamics with energy conservation. Journal of Chemical Physics, 144, 024112(2016) [24] Langenberg, M. and Müller M. eMC:a Monte Carlo scheme with energy conservation. Europhysics Letters, 114, 20001(2016) [25] Stoltz, G. Stable schemes for dissipative particle dynamics with conserved energy. Journal of Computational Physics, 340, 451-469(2017) [26] Litvinov, S., Ellero, M., Hu, X., and Adams, N. A splitting scheme for highly dissipative smoothed particle dynamics. Journal of Computational Physics, 229, 5457-5464(2010) [27] Liu, G. R. and Liu, M. B. Smoothed Particle Hydrodynamics, a Meshfree Particle Method, World Scientific Publishing, Singapore (2003) [28] Liu, M., Liu, G., and Lam, K. Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and Applied Mathematics, 155, 263-284(2003) [29] Hairer, E., Lubich, C., and Wanner, G. Geometric numerical integration illustrated by the StörmerVerlet method. Acta Numerica, 12, 399-450(2003) [30] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical Integration:Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, New York (2002) [31] Marsh, C. Theoretical Aspects of Dissipative Particle Dynamics, Ph. D. dissertation, University of Oxford, Oxford (1998) |