[1] Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticle. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 231, 99-105(1995)
[2] Zhu, J., Zheng, L., Zheng, L. C., and Zhang, X. X. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction. Applied Mathematics and Mechanics (English Edition), 36(9), 1131-1146(2015) https://doi.org/10.1007/s10483-015-1977-6
[3] Hsiao, K. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850-861(2016)
[4] Hayat, T., Asad, S., and Alsaedi, A. Flow of Casson fluid with nanoparticles. Applied Mathematics and Mechanics (English Edition), 37(4), 459-470(2016) https://doi.org/10.1007/s10483-016-2047-9
[5] Sheikholeslami, M. and Rokni, H. B. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Computer Methods in Applied Mechanics and Engineering, 317, 419-430(2017)
[6] Sheikholeslami, M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. International Journal of Hydrogen Energy, 42, 821-829(2017)
[7] Zhu, J., Wang, S. N., Zheng, L. C., and Zhang, X. X. Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity. Applied Mathematics and Mechanics (English Edition), 38, 125-136(2017) https://doi.org/10.1007/s10483-017-2155-6
[8] Sheikholeslami, M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. Journal of Molecular Liquids, 234, 364-374(2017)
[9] Mahanthesh, B., Gireesha, B. J., Shehzad, S. A., Abbasi, F. M., and Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Applied Mathematics and Mechanics (English Edition), 38(7), 969-980(2017) https://doi.org/10.1007/s10483-017-2219-6
[10] Hayat, T., Mumtaz, M., Shafiq, A., and Alsaedi, A. Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Applied Mathematics and Mechanics (English Edition), 38(2), 271-288(2017) https://doi.org/10.1007/s10483-017-2168-9
[11] Oyelakin, I. S., Mondal, S., and Sibanda, P. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Engineering Journal, 55, 1025-1035(2016)
[12] Cattaneo, C. Sulla conduzione del calore. Some Aspects of Diffusion Theory (ed. Pignedoli, A.), Springer, Berlin, Heidelberg, 83-101(1948)
[13] Christov, C. I. On frame in different formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communication, 36, 481-486(2009)
[14] Straughan, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95-98(2010)
[15] Li, J., Zheng, L., and Liu, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19-25(2016)
[16] Hayat, T., Khan, M. I., Farooq, M., Yasmeen, T., and Alsaedi, A. Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Journal of Molecular Liquids, 220, 49-55(2016)
[17] Liu, L., Zheng, L., Liu, F., and Zhang, X. An improved heat conduction model with Riesz fractional Cattaneo-Christov flux. International Journal of Heat and Mass Transfer, 103, 1191-1197(2016)
[18] Hayat, T., Qayyum, S., Imtiaz, M., and Alsaedi, A. Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with homogeneous-heterogeneous reactions. PLoS One, 11, e0148662(2016)
[19] Hayat, T., Qayyum, S., Imtiaz, M., and Alsaedi, A. Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model. Results in Physics, 7, 126-133(2017)
[20] Hayat, T., Kiran, A., Imtiaz, M., and Alsaedi, A. Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model. Results in Physics, 7, 823-831(2017)
[21] Hashim and Khan, M. On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet. Results in Physics, 7, 310-319(2017)
[22] Malik, M. Y., Khan, M., Salahuddin, T., and Khan, I. Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model:using Keller box method. Engineering Science and Technology, an International Journal, 19, 1985-1992(2016)
[23] Muhammad, N., Nadeem, S., and Mustafa, M. Squeezed flow of a nanofluid with CattaneoChristov heat and mass fluxes. Results in Physics, 7, 862-869(2017)
[24] Mustafa, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper convected Maxwell fluid. AIP Advances, 5, 047109(2015)
[25] Shehzad, S. A., Abbasi, F. M., Hayat, T., and Alsaedi, A. Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. Journal of Molecular Liquids, 224, 274-278(2016)
[26] Rubab, K. and Mustafa, M. Cattaneo-Christov heat flux model for MHD three-dimensional flow of Maxwell fluid over a stretching sheet. PLoS One, 11, e0153481(2015)
[27] Abbasi, F. M., Hayat, T., Shehzad, S. A., and Alsaedi, A. Impact of Cattaneo-Christov heat flux on flow of two-types viscoelastic fluid in Darcy-Forchheimer porous medium. International Journal of Numerical Methods for Heat and Fluid Flow, 27, 1955-1966(2017)
[28] Meraj, M. A., Shehzad, S. A., Hayat, T., Abbasi, F. M., and Alsaedi, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38(4), 557-566(2017) https://dor.org/10.1007/s10483-017-2188-6
[29] Devi, S. P. A. and Prakash, M. Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. Journal of the Nigerian Mathematical Society, 34, 318-330(2015)
[30] Devi, S. P. A. and Prakash, M. Slip flow effects over hydromagnetic forced convective flow over a slandering stretching sheet. Journal of Applied Fluid Mechanics, 9, 683-692(2016)
[31] Babu, M. J. and Sandeep, N. MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects. Alexandria Engineering Journal, 55, 2193-2201(2016)
[32] Khan, M. and Khan, W. A. Three-dimensional flow and heat transfer to burgers fluid using Cattaneo-Christov heat flux model. Journal of Molecular Liquids, 221, 651-657(2016)
[33] Hayat, T., Muhammad, T., Alsaedi, A., and Ahmad, B. Three-dimensional flow of nanofluid with Cattaneo-Christov double diffusion. Results in Physics, 6, 897-903(2016)
[34] Raju, C. S. K., Sekhar, K. R., Ibrahim, S. M., Lorentzini, G., Reddy, G. W., and Lorentzini, E. Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles. Continuum Mechanics and Thermodynamics, 29, 699-713(2017)
[35] Raju, C. S. K., Ibrahim, S. M., Anuradha, S., and Priyadharshini, P. Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection. The European Physical Journal Plus, 131, 409(2016)
[36] Hayat, T., Khan, M. I., Farooq, M., Alsaedi, A., Waqas, M., and Yasmeen, T. Impact of CattaneoChristov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer, 99, 702-710(2016)
[37] Mamatha, S. U., Mahesha, and Raju, C. S. K. Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions. Informatics Medicine Unlocked, 9, 76-85(2017)
[38] Hsiao, K. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. Energy, 130, 486-499(2017)
[39] Ramesh, G. K., Gireesha, B. J., Shehzad, S. A., and Abbasi, F. M. Analysis of heat transfer phenomenon in magnetohydrodynamic Casson fluid flow through Cattaneo-Christov heat diffusion theory. Communications in Theoretical Physics, 68, 91-95(2017)
[40] Hsiao, K. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with Radiative and viscous dissipation effects. Applied Thermal Engineering, 112, 1281-1288(2017)
[41] Kumar, N. S., Prasad, P. D., Raju, C. S. K., Varma, S. V. K., and Shehzad, S. A. Partial slip and dissipation on MHD radiative ferro-fluid over a non-linear permeable convectively heated stretching sheet. Results in Physics, 7, 1940-1949(2017)
[42] Ramesh, G. K., Kumar, K. G., Shehzad, S. A., and Gireesha, B. J. Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles. Canadian Journal of Physics, 96, 18-24(2018)
[43] Hsiao, K. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. International Journal of Heat and Mass Transfer, 112, 983-990(2017)
[44] Ramesh, G. K., Prasannakumara, B. C., Gireesha, B. J., and Rashidi, M. M. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. Journal of Applied Fluid Mechanics, 9, 1115-1122(2016)
[45] Hsiao, K. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850-861(2016)
[46] Ramesh, G. K. Numerical study of the influence of heat source on stagnation point flow towards a stretching surface of a Jeffrey nanoliquid. Journal of Engineering, 2015, 382061(2015) |