[1] Neimark, J. I. and Fufaev, N. A. Dynamics of Nonholonomic Systems, American Mathematical Society, Rhode Island (1972)
[2] Shabanov, S. V. Constrained systems and analytical mechanics in spaces with torsion. Journal of Physics A:General Physics, 31, 5177-5190(1998)
[3] Bloch, A. M., Baillieul, J., Crouch, P., and Marsden, J. E. Nonholonomic Mechanics and Control, Springer, London, 207-439(2003)
[4] Bullo, F. and Lewis, A. D. Geometric Control of Mechanical Systems, Springer, New York, 198-246(2005)
[5] Guo, Y. X., Luo, S. K., and Mei, F. X. Progress of geometric dynamics of Non-Holonomic constrained mechanical systems:lagrange theory and others (in Chinese). Advances in Mechanics, 34, 477-492(2004)
[6] Guo, Y. X., Liu, C., Liu, S. X., and Chang, P. Decomposition of almost Poisson structure of nonself-adjoint dynamical systems. Science in China Series E:Technological Sciences, 52, 761-770(2009)
[7] Guo, Y. X., Wang, Y., Chee, Y. G., and Mei, F. X. Nonholonomic versus vakonomic dynamics on a Riemann-Cartan manifold. Journal of Mathematical Physics, 45, 062902(2005)
[8] Wang, Y. and Guo, Y. X. D'Alembert-Lagrange principle on Riemann-Cartan space (in Chinese). Acta Physica Sinica, 54, 5517-5520(2005)
[9] Wang, Y., Guo, Y. X., Lv, Q. S., and Liu, C. Nonholonomic mapping theory and geometric formulation for rotation of a rigid body with one fixed point (in Chinese). Acta Physica Sinica, 58, 5142-5149(2009)
[10] Guo, Y. X., Liu, C., Wang, Y., Liu, S. X., and Chang, P. Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space. Science China (Physics, Mechanics & Astronomy), 53, 1707-1715(2010)
[11] Guo, Y. X., Liu, S. X., Liu, C., Luo, S. K., and Wang, Y. Influence of nonholonomic constraints on variations, symplectic structure, and dynamics of mechanical systems. Journal of Mathematical Physics, 48, 082901(2007)
[12] Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Murray, R. M. Nonholonomic mechanical systems with symmetry. Archive for Rational Mechanics and Analysis, 136, 21-99(1996)
[13] Xiao, J., Liu, C., and Wang, Y. A geometric explanation of Hamilton-Jacobi methods based on the Frobenius theorem (in Chinese). Applied Mathematics and Mechanics, 38, 708-714(2017)
[14] Ding, H. and Chen, L. Q. Galerkin methods for natural frequencies of high-speed axially moving beams. Journal of Sound & Vibration, 329, 3484-3494(2010)
[15] Ding, H., Chen, L. Q., and Yang, S. P. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. Journal of Sound & Vibration, 331, 2426-2442(2012)
[16] Leok, M. and Sosa, D. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 4, 421-442(2012)
[17] Francoise, J. P., Naber, G. L., and Tsun, T. S. Encyclopedia of Mathematical Physics 5, General Relativity; Quantum Gravity; String Theory and M-Theory, Science Press, Beijing, 71-77(2008)
[18] Puntigam, R. A. and Soleng, H. H. Volterra distortions, spinning strings, and cosmic defects. Classical & Quantum Gravity, 14, 1129-1149(1996)
[19] Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific, Singapore, 1-88(1990)
[20] Kleinert, H. Gauge Fields in Condensed Matters Ⅱ:Stresses and Defects, World Scientific, Singapore, 1333-1433(1989)
[21] Kleinert, H. and Pelster, A. Autoparallels from a new action principle. General Relativity & Gravitation, 31, 1439-1447(1999)
[22] Kleinert, H. and Shabanov, S. V. Theory of Brownian motion of a massive particle in spaces with curvature and torsion. Journal of Physics A:General Physics, 31, 7005-7009(1998)
[23] Mei, F. X. Analytical Mechanics (in Chinese), Beijing Institute of Technology Press, Beijing, 313(2013) |