[1] CHANDRASEKHAR, S. Hydrodynamic and Hydromagnetic Stability, Dover, New York (1981)
[2] NETTLETON, L. L. Fluid mechanics of salt domes. Bulletin of the American Association of Petroleum Geologists, 18, 1175-1204(1934)
[3] SELIG, F. A theoretical prediction of salt dome patterns. Geophysics, 30, 633-643(1965)
[4] LISTER, J. R. and KERR, R. C. The effect of geometry on the gravitational instability of a buoyant region of viscous fluid. Journal of Fluid Mechanics, 202, 577-594(1989)
[5] YIANTSIOS, S. G. and HIGGINS, B. G. Rayleigh-Taylor instability in thin viscous films. Physics of Fluids A, 1, 1484-1501(1989)
[6] LIN, C. D., XU, A. G., ZHANG, G. C., LUO, K. H., and LI, Y. J. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows. Physical Review E, 96, 053305(2017)
[7] FERMIGIER, M., LIMAT, L., WESFREID, J. E., BOUDINET, P., and QUILLIET, C. Twodimensional patterns in Rayleigh-Taylor instability of a thin-layer. Journal of Fluid Mechanics, 236, 349-383(1992)
[8] LIMAT, L., JENFFER, P., DAGENS, B., TOURON, E., FERMIGIER, M., and WESFREID, J. E. Gravitational instabilities of thin liquid layers-dynamics of pattern selection. Physica D, 61, 166-182(1992)
[9] LAPUERTA, V., MANCEBO, F. J., and VEGA, J. M. Control of Rayleigh-Taylor instability by vertical vibration in a large aspect ratio containers. Physical Review E, 64, 016318(2001)
[10] CARNEVALE, G. F., ORLANDI, P., ZHOU, Y., and KLOOSTERZIEL, R. C. Rotational suppression of Rayleigh-Taylor instability. Journal of Fluid Mechanics, 457, 181-190(2002)
[11] TAO, J. J., HE, X. T., YE, W. H., and BUSSE, F. H. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Physical Review E, 87, 013001(2013)
[12] BURGESS, J. M., JUEL, A., MCCORMICK, W. D., SWIFT, J. B., and SWINNEY, H. L. Suppression of dripping from a ceiling. Physical Review Letters, 86, 1203-1206(2001)
[13] ALEXEEV, A. and ORON, A. Suppression of the Rayleigh-Taylor instability of thin liquid films by the Marangoni effect. Physics of Fluids, 19, 082101(2007)
[14] WEIDNER, D. E., SCHWARTZ, L. W., and ERES, M. H. Suppression and reversal of drop formation in a model paint film. Chemical Product and Process Modeling, 2, 1-30(2007)
[15] XIE, C. Y., TAO, J. J., SUN, Z. L., and LI, J. Retarding viscous Rayleigh-Taylor mixing by an optimized additional mode. Physical Review E, 95, 023109(2017)
[16] CIMPEANU, R., PAPAGEORGIOU, D. T., and PETROPOPULOS, P. G. On the control and suppression of the Rayleigh-Taylor instability using electric fields. Physics of Fluids, 26, 022105(2014)
[17] BRUN, P. T., DAMIANO, A., RIEU, P., BALESTRA, G., and GALLAIRE, F. Rayleigh-Taylor instability under an inclined plane. Physics of Fluids, 27, 084107(2015)
[18] POPINET, S. An accurate adaptive solver for surface tension driven interfacial flows. Journal of Computational Physics, 228, 5838-5866(2009)
[19] ALMGREN, A. S., BELL, J. B., COLLELA, P., HOWELL, L. H., and WELCOME, M. L. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. Journal of Computational Physics, 142, 1-46(1998)
[20] LISTER, J. R., RALLISON, J. M., and REES, S. J. The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling. Journal of Fluid Mechanics, 647, 239-264(2010) |