[1] LEE, C. and SEO, Y. A new compact spectral scheme for turbulence simulations. Journal of Computational Physics, 183(2), 438-469(2002) [2] CHEONG, C. and LEE, S. Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics. Journal of Computational Physics, 174(1), 248-276(2001) [3] LELE, S. K. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42(1992) [4] KONG, L. H., DUAN, Y. L., WANG, L., YIN, X. L., and MA, Y. P. Spectral-like resolution compact ADI finite difference method for the multi-dimensional Schrödinger equations. Mathematical and Computer Modelling, 55(5), 1798-1812(2012) [5] KONG, L. H., CHEN, M., and YIN, X. L. A novel kind of efficient symplectic scheme for KleinGordon-Schrödinger equation. Applied Numerical Mathematics, 135, 481-496(2019) [6] DENG, X. G., JIANG, Y., MAO, M. L., LIU, H. Y., LI, S., and TU, G. H. A family of hybrid celledge and cell-node dissipative compact schemes satisfying geometric conservation law. Computers and Fluids, 116, 29-45(2015) [7] DENG, X. G., JIANG, Y., MAO, M. L., LIU, H. Y., and TU, G. H. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows. Science China Technological Sciences, 56(10), 2361-2369(2013) [8] JIANG, Y., MAO, M. L., DENG, X. G., and LIU, H. Y. Effect of surface conservation law on large eddy simulation based on seventh-order dissipative compact scheme. Applied Mechanics and Materials, 419, 30-37(2013) [9] JIANG, Y., MAO, M. L., DENG, X. G., and LIU, H. Y. Large eddy simulation on curvilinear meshes using seventh-order dissipative compact scheme. Computers and Fluids, 104, 73-84(2014) [10] GUSTAFSSON, B. The convergence rate for difference approximations to mixed initial boundary value problems. Mathematics of Computation, 29(130), 396-406(1975) [11] CARPENTER, M. H., GOTTLIEB, D., and ABARBANEL, S. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems:methodology and application to highorder compact schemes. Journal of Computational Physics, 111(2), 220-236(1994) [12] ABARBANEL, S. S. and CHERTOCK, A. E. Strict stability of high-order compact implicit finite-difference schemes:the role of boundary conditions for hyperbolic PDEs, I. Journal of Computational Physics, 160(1), 42-66(2000) [13] ABARBANEL, S. S., CHERTOCK, A. E., and YEFET, A. Strict stability of high-order compact implicit finite-difference schemes:the role of boundary conditions for hyperbolic PDEs, Ⅱ. Journal of Computational Physics, 160(1), 67-87(2000) [14] FERNÁNDEZ, D. C. D. R., HICKEN, J. E., and ZINGG, D. W. Review of sum mation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Computer and Fluids, 95, 171-196(2014) [15] SVÄRD, M. and NORDSTR OM, J. Review of summation-by-parts schemes for initial-boundaryvalue problems. Journal of Computer Physics, 268, 17-38(2014) [16] SÜLI, E. and MAYERS, D. F. An Introduction to Numerical Analysis, Cambridge University Press, Cambridge (2003) [17] MATTSSON, K., ALMQUIST, M., and CARPENTER, M. H. Optimal diagonal-norm SBP operators. Journal of Computational Physics, 264(5), 91-111(2014) [18] ROE, P. L. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357-372(1981) [19] TORO, E. Riemann Solvers and Numerical Method for Fluid Dynamics:a Practical Introduction, Springer, Berlin (1999) [20] SVÄRD, M., CARPENTER, M. H., and NORDSTRÖM, J. A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions. Journal of Computational Physics, 225(1), 1020-1038(2007) [21] LIN, Y., CHEN, Y. M., XU, C. F., and DENG, X. G. Optimization of a global seventh-order dissipative compact finite-difference scheme by a genetic algorithm. Applied Mathematics and Mechanics (English Edition), 39(11), 1679-1690(2018) https://doi.org/10.1007/s10483-018-2382-6 |