Applied Mathematics and Mechanics (English Edition) ›› 2019, Vol. 40 ›› Issue (8): 1169-1180.doi: https://doi.org/10.1007/s10483-019-2502-6
Zhenyu MING1, Liping ZHANG1, Yannan CHEN2
收稿日期:
2018-09-27
修回日期:
2019-01-28
出版日期:
2019-08-01
发布日期:
2019-08-01
通讯作者:
Liping ZHANG
E-mail:lipingzhang@tsinghua.edu.cn
基金资助:
Zhenyu MING1, Liping ZHANG1, Yannan CHEN2
Received:
2018-09-27
Revised:
2019-01-28
Online:
2019-08-01
Published:
2019-08-01
Contact:
Liping ZHANG
E-mail:lipingzhang@tsinghua.edu.cn
Supported by:
摘要: The two-dimensional (2D) Eshelby tensors are discussed. Based upon the complex variable method, an integrity basis of ten isotropic invariants of the 2D Eshelby tensors is obtained. Since an integrity basis is always a polynomial functional basis, these ten isotropic invariants are further proven to form an irreducible polynomial functional basis of the 2D Eshelby tensors.
中图分类号:
Zhenyu MING, Liping ZHANG, Yannan CHEN. An irreducible polynomial functional basis of two-dimensional Eshelby tensors[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1169-1180.
Zhenyu MING, Liping ZHANG, Yannan CHEN. An irreducible polynomial functional basis of two-dimensional Eshelby tensors[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1169-1180.
[1] | ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problem. Proceedings of the Royal Society of London, 241, 376-396(1957) |
[2] | ESHELBY, J. D. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London, 252, 561-569(1959) |
[3] | JIANG, Z. Q. and LIU, J. X. Coupled fields of two-dimensional anisotropic magneto-electro-elastic solids with an elliptical inclusion. Applied Mathematics and Mechanics (English Edition), 21(10), 1213-1220(2000) https://doi.org/10.1007/BF02459001 |
[4] | MICHELITSCH, T. M., GAO, H., and LEVIN, V. M. Dynamic eshelby tensor and potentials for ellipsoidal inclusions. Proceedings Mathematical Physical and Engineering Sciences, 459, 863-890(2003) |
[5] | ZOU, W. N., HE, Q. C., HUANG, M. J., and ZHENG, Q. S. Eshelby's problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids, 58, 346-372(2013) |
[6] | HUANG, J. H. and YU, J. S. Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Composites Engineering, 4, 1169-1182(1994) |
[7] | PAN, E. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full-and half-planes. Journal of the Mechanics and Physics of Solids, 52, 567-589(2004) |
[8] | ROATTA, A. and BOLMARO, R. E. An Eshelby inclusion-based model for the study of stresses and plastic strain localization in metal matrix composites, I:general formulation and its application to round particles. Materials Science and Engineering A, 229, 182-191(1997) |
[9] | WANG, X. and SCHIAVONE, P. Two-dimensional Eshelby's problem for piezoelectric materials with a parabolic boundary. Meccanica, 53, 2659-2667(2018) |
[10] | ZOU, W. N. and LEE, Y. Completely explicit solutions of Eshelby's problems of smooth inclusions embedded in a circular disk, full- and half-planes. Acta Mechanica, 229, 1911-1926(2017) |
[11] | SHARMA, P. and SHARMA, R. On the Eshelby's inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. Journal of Applied Mechanics, 70, 418-425(2003) |
[12] | BACON, D. J., BARNETT, D. M., and SCATTERGOOD, R. O. Anisotropic continuum theory of lattice defects. Progress in Materials Science, 23, 51-262(1980) |
[13] | BURYACHENKO, V. A. Multiparticle effective field and related methods in micromechanics of composite materials. Applied Mechanics Reviews, 54, 1-47(2001) |
[14] | MURA, T. and BARNETT, D. M. Micromechanics of Defects in Solids, Springer Science and Business Media, Berlin (1987) |
[15] | TING, T. C. T. Anisotropic Elasticity:Theory and Applications, Oxford Iniversity Press, New York (1996) |
[16] | ZHENG, Q. S. On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. International Journal of Engineering Science, 31, 1013-1024(1993) |
[17] | WANG, C. C. A new representation theorem for isotropic functions:an answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions, part 1:scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36, 166-197(1970) |
[18] | WANG, C. C. A new representation theorem for isotropic functions:an answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions, part 2:vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensorvalued functions. Archive for Rational Mechanics and Analysis, 36, 198-223(1970) |
[19] | WANG, C. C. Corrigendum to my recent papers on "Representations for isotropic functions" Vol. 36, pp. 166-197, 198-223(1970). Archive for Rational Mechanics and Analysis, 43, 392-395(1971) |
[20] | SMITH, G. F. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9, 899-916(1971) |
[21] | BOEHLER, J. P. Application of Tensor Functions in Solid Mechanics, Springer-Verlag, Vienna (1987) |
[22] | SMITH, G. F. and BAO, G. Isotropic invariants of traceless symmetric tensors of orders three and four. International Journal of Engineering Science, 35, 1457-1462(1997) |
[23] | OLIVE, M. and AUFFRAY, N. Isotropic invariants of completely symmetric third-order tensor. Journal of Mathematical Physics, 55, 092901(2014) |
[24] | OLIVE, M. About Gordan's algorithm for binary forms. Foundations of Computational Mathematics, 17, 1407-1466(2017) |
[25] | OLIVE, M., KOLEV, B., and AUFFRAY, N. A minimal integrity basis for the elasticity tensor. Archive for Rational Mechanics and Analysis, 226, 1-31(2017) |
[26] | LIU, J. J., DING, W. Y., QI, L. Q., and ZOU, W. N. Isotropic polynomial invariants of the Hall tensor. Applied Mathematics and Mechanics (English Edition), 39(12), 1845-1856(2018) https://doi.org/10.1007/s10483-018-2398-9 |
[27] | CHEN, Y. N., HU, S. L., QI, L. Q., and ZOU, W. N. Irreducible function bases of isotropic invariants of a third order symmetric and traceless tensor. Frontiers of Mathematics in China, 14, 1-6(2019) |
[28] | CHEN, Z. M., LIU, J. J., QI, L. Q., ZHENG, Q. S., and ZOU, W. N. An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. Journal of Mathematical Physics, 59, 081703(2018) |
[29] | PIERCE, J. F. Representations for transversely hemitropic and transversely isotropic stress-strain relations. Journal of Elasticity, 37, 243-280(1995) |
[30] | VIANELLO, M. An integrity basis for plane elasticity tensors. Archives of Mechanics, 49, 197-208(1997) |
[31] | ZHENG, Q. S., ZHAO, Z. H., and DU, D. X. Irreducible structure, symmetry and average of Eshelby's tensor fields in isotropic elasticity. Journal of the Mechanics and Physics of Solids, 54, 368-383(2006) |
[32] | HILBERT, D. Theory of Algebraic Invariants, Cambridge University Press, New York (1993) |
[33] | ZOU, W., ZHENG, Q. S., and DU, D. X. Orthogonal irreducible decompositions of tensors of high orders. Mathematics and Mechanics of Solids, 6, 249-267(2001) |
[34] | PENNISI, S. and TROVATO, M. On the irreducibility of Professor G. F. Smiths representations for isotropic functions. International Journal of Engineering Science, 25, 1059-1065(1987) |
[1] | Tianbo WANG, Dinglin YANG, Chen LI, Diwei SHI. An elementary proof for the representation theorem of analytic isotropic tensor functions of a second-order tensor[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 747-754. |
[2] | Shuang LI, Lianhe LI. Effective elastic properties of one-dimensional hexagonal quasicrystal composites[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1439-1448. |
[3] | Peinan ZHONG, Guojun HUANG, Guowei YANG. Frame-invariance in finite element formulations of geometrically exact rods[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(12): 1669-1688. |
[4] | 吴惠彬;梅凤翔. Form invariance and conserved quantity for weakly nonholonomic system[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1293-1300. |
[5] | 黄卫立;蔡建乐. Conformal invariance for nonholonomic system of Chetaev’s type with variable mass[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1393-1402. |
[6] | 马杭 郭钊 秦庆华. Two-dimensional polynomial eigenstrain formulation of boundary integral equation with numerical verification[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(5): 551-562. |
[7] | 张国清;余建星. STUDY OF THE EQUIVALENT THEOREM OF GENERALIZED VARIATIONAL PRINCIPLES IN ELASTICITY[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(3): 347-357. |
[8] | 高云峰;宝音贺西;李俊峰. COMPARISON OF TWO METHODS IN SATELLITE FORMATION FLYING[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(8): 902-908. |
[9] | 罗绍凯. FORM INVARIANCE AND NOETHER SYMMETRICAL CONSERVED QUANTITY OF RELATIVISTIC BIRKHOFFIAN SYSTEMS[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(4): 468-478. |
[10] | 王向东;徐小增;梁(汲金)廷. MAXIMUM PRINCIPLES FOR GENERALIZED SOLUTIONS OF QUASI-LINEAR ELLIPTIC EQUATIONS[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(4): 458-467. |
[11] | 邹文楠. OBJECTIVITY REQUIREMENT FOR FLUID DYNAMICS[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(12): 1403-1410. |
[12] | 陈向炜;罗绍凯;梅凤翔. A FORM INVARIANCE OF CONSTRAINED BIRKHOFFIAN SYSTEM[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(1): 53-57. |
[13] | 阎大桂;徐军;严尚安;付诗禄. FIfth-ORDER ISOTROPIC DESCARTES TENSOR[J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(4): 395-398. |
[14] | 滕志东. ON THE ASYMPTOTICAL BEHAVIOUR OF SOLUTIONS OF A CLASS OF NONLINEAR CONTROL SYSTEMS[J]. Applied Mathematics and Mechanics (English Edition), 1999, 20(12): 1405-1412. |
[15] | 梁天麟;周凌云. PRINCIPLE OF EQUAL EFFECTS OF GENERAL RELATIVITY AND INVARIANCE OF CLASSICAL MECHANICS EQUATIONS[J]. Applied Mathematics and Mechanics (English Edition), 1993, 14(4): 361-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||