[1] DOWSON, D. and HIGGINSON, G. R. Elasto-Hydrodynamic Lubrication, 2nd ed., Pergaman Press, New York (1977) [2] DOWSON, D. and EHRET, P. Past, present and future studies in elastohydrodynamics. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 213(5), 317-333(1999) [3] SPIKES, H. A. Sixty years of EHL. Lubrication Science, 18(4), 265-291(2006) [4] LUGT, P. M. and MORALES-ESPEJEL, G. E. A review of elasto-hydrodynamic lubrication theory. Tribology Transactions, 54, 470-496(2011) [5] VENNER, C. H. Multilevel Solution of the EHL Line and Point Contact Problems, Ph. D. dissertation, University of Twente (1991) [6] GOODYER, C. E. Adaptive Numerical Methods for Elastohydrodynamic Lubrication, Ph. D. dissertation, University of Leeds (2001) [7] PETRUSEVICH, A. I. Fundamental conclusions from the contact hydrodynamic theory of lubrication. Izvestiya Akademii Nauk SSSR (OTN), 2, 209-223(1951) [8] DOWSON, D., HIGGINSON, G. R., and WHITAKER, A. V. Stress distribution in lubricated rolling contacts. Proceedings of the Institution of Mechanical Engineers Symposium on Fatigue in Rolling Contacts, 6, 66-75(1963) [9] BOOKER, J. Dynamically loaded journal bearings:mobility method of solution. Journal of Basic Engineering, 87(3), 537-546(1965) [10] DOWSON, D., TAYLOR, C. M., and ZHU, G. A transient elastohydrodynamic lubrication analysis of a cam and follower. Journal of Physics D:Applied Physics, 25(1A), 313-320(1992) [11] VICHARD, J. P. Transient effects in the lubrication of Hertzian contacts. Journal of Mechanical Engineering Science, 13(3), 173-189(1971) [12] TRIPP, J. H. and HAMROCK, B. J. Surface roughness effects in EHL contacts. Proceedings of the Leeds-Lyon Symposium on Tribology, The University of Leeds, Leeds, 30-39(1984) [13] WEDEVEN, L. D. and CUSANO, C. Elastohydrodynamic film thickness measurements of artificially produced surface dents and grooves. ASLE Transactions, 22(4), 369-381(1979) [14] KANETA, M., KANADA, T., and NISHIKAWA, H. Optical interferometric observations of the effects of a moving dent on point contact EHL. Tribology Series, 32, 69-79(1997) [15] CHAOMLEFFEL, J. P., DALMAZ, G., and VERGNE, P. Experimental results and analytical predictions of EHL film thickness. Tribology International, 40, 1543-1552(2007) [16] ZHANG, Y., WANG, W., ZHANG, S., and ZHAO, Z. Experimental study of EHL film thickness behaviour at high speed in ball-on-ring contacts. Tribology International, 113, 216-223(2017) [17] GOGLIA, P. R., CUSANO, C., and CONRY, T. F. The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts, part II:wavy surface. Journal of Tribology, 106(1), 113-119(1984) [18] KWEH, C. C., EVANS, H. P., and SNIDLE, R. W. Micro-elastohydrodynamic lubrication of an elliptical contact with transverse and three-dimensional sinusoidal roughness. Journal of Tribology, 111(4), 577-584(1989) [19] LEE, R. T. and HAMROCK, B. J. A circular nonNewtonian fluid model, part II:used in microelastohydrodynamic lubrication. Journal of Tribology, 112(3), 497-505(1990) [20] VENNER, C. H., LUBRECHT, A. A., and TEN-NAPEL, W. E. Numerical simulation of the overrolling of a surface feature in an EHL line contact. Journal of Tribology, 113(4), 777-783(1991) [21] HUGHES, T. G., ELCOATE, C. D., and EVANS, H. P. Coupled solution of the elastohydrodynamic line contact problem using a differential deflection method. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 214(4), 585-598(2000) [22] AHMED, S., GOODYER, C. E., and JIMACK, P. K. An efficient preconditioned iterative solution of fully-coupled elastohydrodynamic lubrication problems. Applied Numerical Mathematics, 62(5), 649-663(2012) [23] HABCHI, W. and ISSA, J. S. An exact and general model order reduction technique for the finite element solution of elastohydrodynamic lubrication problems. Journal of Tribology, 139(5), 051501(2017) [24] MAIER, D., HAGER, C., HETZLER, H., FILLOT, N., VERGNE, P., DUREISSEIX, D., and SEEMANN, W. A nonlinear model order reduction approach to the elastohydrodynamic problem. Tribology International, 82, 484-492(2015) [25] BUJURKE, N. M., KANTLI, M. H., and SHETTAR, B. M. Wavelet preconditioned NewtonKrylov method for elastohydrodynamic lubrication of line contact problems. Applied Mathematical Modelling, 46, 285-298(2017) [26] LIESEN, J. and STRAKOS, Z. Krylov Subspace Methods:Principles and Analysis, Oxford University Press, Oxford (2013) [27] ALMQVIST, T. and LARSSON, R. Thermal transient rough EHL line contact simulations by aid of computational fluid dynamics. Tribology International, 41, 683-693(2008) [28] ALMQVIST, T., ALMQVIST, A., and LARSSON, R. A comparison between computational fluid dynamic and Reynolds approaches for simulating transient EHL line contacts. Tribology International, 37, 61-69(2004) [29] HAJISHAFIEE, A., KADIRIC, A., IOANNIDES, S., and DINI, D. A coupled finite-volume CFD solver for two-dimensional elasto-hydrodynamic lubrication problems with particular application to rolling element bearings. Tribology International, 109, 258-273(2017) [30] TOSIC, M., LARSSON, R., JOVANOVIC, J., LOHNER, T., BJORLING, M., and STAHL, K. A computational fluid dynamics study on shearing mechanisms in thermal elastohydrodynamic line contacts. Lubricants, 7(8), 69(2019) [31] HARTINGER, M. and REDDYHOFF, T. CFD modeling compared to temperature and friction measurements of an EHL line contact. Tribology International, 126, 144-152(2018) [32] SAAD, Y. Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA (2003) [33] CHEN, K. Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cambridge (2005) [34] HOUSEHOLDER, A. S. and BAUER, F. L. On certain methods for expanding the characteristic polynomial. Numerische Mathematik, 1, 29-37(1959) [35] HESTENES, M. R. and STIEFEL, E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409-436(1952) [36] REID, J. K. On the method of conjugate gradients for the solution of large sparse systems of linear equations. Proceeding, Conference on Large Sparse Sets of Linear Equations, Academic Press, New York, 231-254(1971) [37] PAIGE, C. C. and SAUNDERS, M. A. Solution of sparse indefinite systems of linear equations. SIAM Journal of Numerical Analysis, 12(4), 617-629(1975) [38] SAAD, Y. and SCHULTZ, M. H. GMRES:a generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3), 856-869(1986) [39] WALKER, H. F. Implementation of the GMRES method using Householder transformations. SIAM Journal on Scientific and Statistical Computing, 9(1), 152-163(1988) [40] DRKOSOVA, J., GREENBAUM, A., ROZLOZNIK, M., and STRAKOS, Z. Numerical stability of GMRES. BIT Numerical Mathematics, 35, 309-330(1995) [41] PAIGE, C. C., ROZLOZNIK, M., and STRAKOS, Z. Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM Journal on Matrix Analysis and Applications, 28(1), 264-284(2006) [42] BARRETT, R., BERRY, M., CHAN, T. F., DEMMEL, J., DONATO, J. M., DONGARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C., and VAN-DER-VORST, H. Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics, Philadelphia, PA (1994) [43] SIMONCINI, V. and SZYLD, D. B. Recent computational developments in Krylov subspace methods for linear systems. Numerical Linear Algebra with Applications, 14(1), 1-59(2007) [44] KNOLL, D. A. and KEYES, D. E. Jacobian-free Newton-Krylov methods:a survey of approaches and applications. Journal of Computational Physics, 193(2), 357-397(2004) [45] FORD, J. M. Wavelet-Based Preconditioning of Dense Linear Systems, Ph. D. dissertation, University of Liverpool (2001) [46] KELLEY, C. T. Iterative Methods for Linear and Nonlinear Equations, Society for Industrial and Applied Mathematics, Philadelphia, PA (1995) [47] SRIRATTAYAWONG, S. and GAO, S. A computational fluid dynamics study of elastohydrodynamic lubrication line contact problem with consideration of surface roughness. Computational Thermal Sciences:An International Journal, 5(5), 195-213(2013) |