[1] REDDY, J. N. Mechanics of Laminated Composite Plates:Theory and Analysis, CRC Press, Boca Raton (1997) [2] SUMAN, S. D., HIRWANI, C. K., CHATURVEDI, A., and PANDA, S. K. Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conference Series:Materials Science and Engineering, 178, 012026(2017) [3] KRISHNA, M. A. V., ANJANAPPA, M., and WU, Y. F. The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. Journal of Sound and Vibration, 206(2), 133-149(1997) [4] KRISHNA, M. A. V., ANJANAPPA, M., WU, Y. F., BHATTACHARYA, B., and BHAT, M. S. Vibration suppression of laminated composite beam using embedded magnetostrictive layers. Journal of the Institution of Engineers:Aerospace Engineers Journal, 78, 38-44(1998) [5] REDDY, J. N. and BARBOSA, J. I. On vibration suppression of magnetostrictive beams. Smart Materials and Structures, 9(1), 49-58(2000) [6] PRADHAN, S. C., NG, T. Y., LAM, K. Y., and REDDY, J. N. Control of laminated composite plates using magnetostrictive layers. Smart Materials and Structures, 10(4), 1-11(2001) [7] SUBRAMANIAN, P. Vibration suppression of symmetric laminated composite beams. Smart Materials and Structures, 11(6), 880-885(2002) [8] KUMAR, J. S., GANESAN, N., SWARNAMANI, S., and PADMANABHAN, C. Active control of beam with magnetostrictive layer. Composite Structures, 81(13), 1375-1382(2003) [9] KUMAR, J. S., GANESAN, N., SWARNAMANI, S., and PADMANABHAN, C. Active control of cylindrical shell with magnetostrictive layer. Journal of Sound and Vibration, 262(3), 577-589(2003) [10] LEE, S. J., REDDY, J. N., and ROSTAM-ABADI, F. Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elements in Analysis and Design, 40(5-6), 463-483(2004) [11] KUMAR, J. S., GANESAN, N., SWARNAMANI, S., and PADMANABHAN, C. Active control of simply supported plates with a magnetostrictive layer. Smart Materials and Structures, 13(3), 487-492(2004) [12] GHOSH, D. P. and GOPALAKRISHNAN, S. Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Materials and Structures, 14(6), 1462-1473(2005) [13] ZHOU, H. M. and ZHOU, Y. H. Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Materials and Structures, 16(1), 198-206(2007) [14] OLABI, A. G. and GRUNWALD, A. Design and application of magnetostrictive materials. Materials & Design, 29(2), 469-483(2008) [15] KARUNANIDHI, S. and SINGAPERUMAL, M. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sensors and Actuators A:Physical, 157(2), 185-197(2010) [16] FERREIRA, A. J. M., CARRERA, E., CINEFRA, M., ROQUE, C. M. C., and POLIT, O. Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Composites Part B:Engineering, 42(5), 1276-1284(2011) [17] LEE, S. J. and REDDY, J. N. Non-linear response of laminated composite plates under thermomechanical loading. International Journal of Non-Linear Mechanics, 40(7), 971-985(2005) [18] REDDY, J. N. On laminated composite plates with integrated sensors and actuators. Engineering Structures, 21(7), 568-593(1999) [19] ZENKOUR, A. M. Torsional analysis of heterogeneous magnetic circular cylinder. Steel and Composite Structures, 17(4), 535-548(2014) [20] ZHANG, Y., ZHOU, H., and ZHOU, Y. Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mechanica Solida Sinca, 28, 50-60(2015) [21] DAPINO, M. J., FLATAU, A. B., and CALKINS, F. T. Statistical analysis of Terfenol-D materials properties. Smart Structures and Intelligent Systems, 3041, 256-267(1997) [22] SUN, L. and ZHENG, X. Numerical simulation on coupling behavior of Terfenol-D rods. International Journal of Solids and Structures, 43(6), 1613-1623(2006) [23] ANJANAPPA, M. and BI, J. Modelling, design and control of embedded Terfenol-D actuator. Smart Structures and Intelligent Systems, 1917, 908-918(1993) [24] ANJANAPPA, M. and BI, J. A theoretical and experimental study of magnetostrictive mini actuators. Smart Materials and Structures, 3(2), 83-91(1994) [25] ZENKOUR, A. M. and EL-SHAHRANY, H. D. Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. Journal Computational Applied Mechanics, 50(1), 69-75(2019) [26] ZENKOUR, A. M. and EL-SHAHRANY, H. D. Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. Journal of Materials Research and Technology, 9(3), 4727-4748(2020) [27] KOCONIS, D. B., KOLLAR, L. P., and SPRINGER, G. S. Shape control of composite plates and shells with embedded actuators I:voltage specified. Journal of Composite Materials, 28(5), 415-458(1994) [28] HONG, C. C. Transient responses of magnetostrictive plates without shear effects. International Journal of Engineering Science, 47(3), 355-362(2009) [29] HONG, C. C. Transient responses of magnetostrictive plates by using the GDQ method. European Journal of Mechanics-A/Solids, 29(6), 1015-1021(2010) [30] SHANKAR, G., KUMAR, S. K., and MAHATO, P. K. Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin-Walled Structures, 116, 53-68(2017) [31] ARANI, A. G. and MARAGHI, Z. K. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory. Ain Shams Engineering Journal, 7(1), 361-369(2016) [32] ARANI, A. G., MARAGHI, Z. K., and ARANI, H. K. Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory. Journal of Vibration and Control, 23(19), 3057-3070(2017) [33] CHEN, Y. H., HUANG, Y. H., and SHIH, C. T. Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. Journal of Sound and Vibration, 241(5), 809-824(2001) [34] CALIM, F. F. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B:Engineering, 103, 98-112(2016) [35] AREFI, M. and ZENKOUR, A. M. Wave propagation analysis of a functionally graded magnetoelectro-elastic nanobeam rest on visco-Pasternak foundation. Mechanics Research Communications, 79, 51-62(2017) [36] ZENKOUR, A. M. Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. The European Physical Journal Plus, 133, 14(2018) [37] SOBHY, M. and ZENKOUR, A. M. Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Composites Part B:Engineering, 154, 492-506(2018) [38] ZENKOUR, A. M. and AL-SUBHI, A. H. Thermal vibrations of a graphene sheet embedded in viscoelastic medium based on nonlocal shear deformation theory. International Journal of Acoustics and Vibration, 24(3), 485-493(2019) [39] BAFERANI, A. H. and SAIDI, A. R. Effects of in-plane loads on vibration of laminated thick rectangular plates resting on elastic foundation:an exact analytical approach. European Journal of Mechanics-A/Solids, 42, 299-314(2013) [40] MALEKZADEH, K., KHALILI, S. M. R., and ABBASPOUR, P. Vibration of non-ideal simply supported laminated plate on an elastic foundation subjected to in-plane stresses. Composite Structures, 92(6), 1478-1484(2010) [41] THAI, H. T., PARK, M., and CHOI, D. H. A simple refined theory for bending, buckling and vibration of thick plates resting on elastic foundation. International Journal of Mechanical Sciences, 73, 40-52(2013) [42] RAZAVI, S. and SHOOSHTARI, A. Free vibration analysis of a magneto-electro-elastic doublycurved shell resting on a Pasternak-type elastic foundation. Smart Materials and Structures, 23(10), 105003(2014) [43] ZAMANI, H. A., AGHDAM, M. M., and SADIGHI, M. Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory. Composite Structures, 182(12), 25-35(2017) [44] ZENKOUR, A. M. Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mechanica, 171(3-4), 171-187(2004) [45] ZENKOUR, A. M. On vibration of functionally graded plates according to a refined trigonometric plate theory. International Journal of Structural Stability and Dynamics, 5(2), 279-297(2005) [46] ZENKOUR, A. M. The refined sinusoidal theory for FGM plates on elastic foundations. International Journal of Mechanical Sciences, 51(11-12), 869-880(2009) [47] ZENKOUR, A. M. Exact relationships between the classical and sinusoidal plate theories for FGM plates. Mechanics of Advanced Materials and Structures, 19(7), 551-567(2012) [48] ZENKOUR, A. M. Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory. Composite Structures, 94(12), 3685-3696(2012) [49] ZENKOUR, A. M. Trigonometric solution for an exponentially graded thick plate resting on elastic foundations. Archive of Mechanical Engineering, 65(2), 193-208(2018) [50] LI, J., MA, Z., WANG, Z., and NARITA, Y. Random vibration control of laminated composite plates with piezoelectric fiber reinforced composites. Acta Mechanica Solida Sinca, 29(3), 316-327(2016) |