[1] PECORA, L. M. and CARROLL, T. L. Synchronization in chaotic systems. Physical Review Letters, 64, 821-824(1990) [2] ALBERT, R. and BARABASI, A. L. Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47-97(2001) [3] BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., and HWANG, D. U. Complex networks:structure and dynamics. Physics Reports, 424, 175-308(2006) [4] TANG, L. J., LI, D., and WANG, H. X. Lag synchronization for fuzzy chaotic system based on fuzzy observer. Applied Mathematics and Mechanics (English Edition), 30(6), 803-810(2009) https://doi.org/10.1007/s10483-009-0615-y [5] MAO, X. C. and WANG, Z. H. Stability, bifurcation, and synchronization of delay-coupled ring neural networks. Nonlinear Dynamics, 84, 1063-1078(2016) [6] REN, H. R., XIONG, J. L., LU, R. Q., and WU, Y. Q. Synchronization analysis of network systems applying sampled-data controller with time-delay via the Bessel-Legendre inequality. Neurocomputing, 331, 346-355(2019) [7] LI, C. P., XU, C. X., SUN, W. G., XU, J., and KURTHS, J. Outer synchronization of coupled discrete-time networks. Chaos:An Interdisciplinary Journal of Nonlinear Science, 19, 013106(2009) [8] LAN, J. C., ZHANG, Q. L., WEI, S., PENG, Z. K., DONG, X. J., and ZHANG W. M. Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases. Applied Mathematics and Mechanics (English Edition), 40(1), 63-84(2019) https://doi.org/10.1007/s10483-019-2409-6 [9] WATTS, D. J. and STROGATZ, S. H. Collective dynamics of small world networks. nature, 393, 440-442(1998) [10] NEWMAN, M. E. J. and WATTS, D. J. Renormalization group analysis of the small-world network model. Physics Letters A, 263, 341-346(1999) [11] WANG, X. F. and CHEN, G. R. Synchronization in small-world dynamical networks. International Journal of Bifurcation and Chaos, 12, 187-192(2002) [12] BARAHONA, M. and PECORA, L. M. Synchronization in small-world systems. Physical Review Letters, 89, 054101(2002) [13] BELYKH, I. V., BELYKH, V. N., and HASLER, M. Blinking model and synchronization in smallworld networks with a time-varying coupling. Physica D:Nonlinear Phenomena, 195, 188-206(2004) [14] LI, C. P., SUN, W. G., and KURTHS, J. Synchronization between two coupled complex networks. Physical Review E, 76, 046204(2007) [15] LIU, S. and WANG, Q. Y. Outer synchronization of small-world networks by a second-order sliding mode controller. Nonlinear Dynamics, 89, 1817-1826(2017) [16] ZHANG, H. H. and XIAO, P. C. Seizure dynamics of coupled oscillators with Epileptor field model. International Journal of Bifurcation and Chaos, 28, 1850041(2018) [17] ZHANG, C., WANG, X. Y., LUO, C., LI, J. Q., and WANG, C. P. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Physica A:Statistical Mechanics and Its Applications, 494, 251-264(2018) [18] LI, C. P., XU, C. X., SUN, W. G., and KURTHS, J. Outer synchronization of coupled discrete-time networks. Chaos:An Interdisciplinary Journal of Nonlinear Science, 19, 013106(2009) [19] ZHOU, G. Y., LI, C. R., LI, T. T., WANG, C., HE, F. J., and SUN, J. C. Outer synchronization investigation between WS and NW small-world networks with different node numbers. Physica A:Statistical Mechanics and Its Applications, 457, 506-513(2016) [20] ARELLANO-DELGADO, A., LOPEZ-GUTIERREZ, R. M., MARTINEZ-CLARK, R., and CURZ-HERNANDEZ, C. Small-world outer synchronization of small-world chaotic networks. Journal of Computational and Nonlinear Dynamics, 13, 101008(2018) [21] CHEN, C., XIE, K., LEWIS, F. L., XIE, S., and FIERRO, R. Adaptive synchronization of multiagent systems with resilience to communication link faults. Automatica, 111, 108636(2020) [22] DU, L., YANG, Y., and LEI, Y. M. Synchronization in a fractional-order dynamic network with uncertain parameters using an adaptive control strategy. Applied Mathematicsand Mechanics (English Edition), 39(3), 353-364(2018) https://doi.org/10.1007/s10483-018-2304-9 [23] WEN, G. H., WANG, P. J., YU, X. H., YU, W. W., and CAO, J. D. Pinning synchronization of complex switching networks with a leader of nonzero control inputs. IEEE Transactions on Circuits and Systems I:Regular Papers, 66, 3100-3112(2019) [24] PRATAP, A., RAJA, R., CAO, J., RIHAN, F. A., and SEADAWY, A. R. Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos, Solitons and Fractals, 131, 109491(2020) [25] LI, F. B., DU, C. L., YANG, C. H., WU, L. G., and GUI, W. H. Finite-time asynchronous sliding mode control for Markovian jump systems. Automatica, 109, 108503(2019) [26] LIU, J. X., WU, L. G., WU, C. W., LUO, W. S., and FRANQUELO, L. G. Event-triggering dissipative control of switched stochastic systems via sliding mode. Automatica, 103, 261-273(2019) [27] LIU, J., JI, J. C., and ZHOU, J. Synchronization of networked multibody systems using fundamental equation of mechanics. Applied Mathematicsand Mechanics (English Edition), 37(5), 555-572(2016) https://doi.org/10.1007/s10483-016-2071-8 [28] LU, J. A., XIE, J., LU, J. H., and CHEN, S. H. Control chaos in transition system using sampleddata feedback. Applied Mathematicsand Mechanics (English Edition), 24(11), 1309-1315(2003) https://doi.org/10.1007/BF02439654 [29] GUO, Y. S. and CHEN, L. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance. Applied Mathematicsand Mechanics (English Edition), 29(5), 583-590(2008) https://doi.org/10.1007/s10483-008-0503-1 [30] YIN, L. J., DENG, Z. H., HUO, B. Y., and XIA, Y. Q. Finite-time synchronization for chaotic gyros systems with terminal sliding mode control. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 49, 1131-1140(2017) [31] ZHANG, C. X., WANG, J. H., ZHANG, D. X., and SHAO, X. W. Synchronization and tracking of multi-spacecraft formation attitude control using adaptive sliding mode. Asian Journal of Control, 21, 832-846(2019) [32] UTKIN, V. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22, 212-222(1977) [33] DING, S. H., PARK, J. H., and CHEN, C. C. Second-order sliding mode controller design with output constraint. Automatica, 112, 108704(2020) [34] DU, H. B., CHEN, X. P., WEN, G. H., YU, X. H., and LU, J. H. Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Transactions on Industrial Electronics, 65, 9916-9927(2018) [35] YU, X. H. and MAN, Z. H. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and Systems I:Regular Papers, 49, 261-264(2002) [36] FENG, Y., YU, X. H., and MAN, Z. H. Brief non-singular terminal sliding mode control of rigid manipulators. Automatica, 38, 2159-2167(2002) [37] KHANZADEH, A. and POURGHOLI, M. Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics, 88, 2637-2649(2017) [38] AL-MAHBASHI, G. and NOORANI, M. S. M. Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control. IEEE Access, 7, 7082-7092(2019) [39] LI, C. R., LÜ, L., YANG, Y. M., ZHOU, S., and HONG, Y. X. Research on outer s ynchronization between uncertain time-varying networks with different node number. Physica A-Statistical Mechanics and Its Applications, 492, 2301-2309(2018) [40] MANNE, K. K., HURD, A. J., and KENKRE, V. M. Nonlinear waves in reaction-diffusion systems:the effect of transport memory. Physical Review E, 61, 4177(2000) [41] BURGERS, J. M. The Nonlinear Diffusion Equation:Asymptotic Solutions and Statistical Problems, Springer Science and Business Media, Boston (1977) |