[1] PAN, Z. W., DAI, Z. R., and WANG, Z. L. Nanobelts of semiconducting oxides. Science, 291, 1947-1949(2001) [2] WAN, Q., LI, Q. H., CHEN, Y. J., WANG, T. H., HE, X. L., LI, J. P., and LIN, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84, 3654-3656(2004) [3] LAZARUS, A., THOMAS, O., and DEU, J. F. Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elements in Analysis and Design, 49, 35-51(2012) [4] SU, W. S., CHEN, Y. F., HSIAO, C. L., and TU, L. W. Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters, 90, 063110(2007) [5] WANG, X. D., ZHOU, J., SONG, J. H., LIU, J., XU, N. S., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6, 2768-2772(2006) [6] LI, C., GUO, W., KONG, Y., and GAO, H. Size-dependent piezoelectricity in zinc oxide nanofilms from first-principles calculations. Applied Physics Letters, 90, 033108(2007) [7] HADJESFANDIARI, A. R. Size-dependent piezoelectricity. International Journal of Solids and Structures, 50, 2781-2791(2013) [8] SHEN, S. and HU, S. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 58, 665-677(2010) [9] HU, S. D., LI, H., and TZOU, H. S. Distributed flexoelectric structural sensing:theory and experiment. Journal of Sound and Vibration, 348, 126-136(2015) [10] BURSIAN, E. V. and TRUNOV, N. N. Nonlocal piezoelectric effect. Soviet Physics Solid State, 16, 760-762(1974) [11] ERINGEN, A. C. Theory of nonlocal piezoelectricity. Journal of Mathematical Physics, 25, 717-727(1984) [12] ARANI, A. G., ABDOLLAHIAN, M., and KOLAHCHI, R. Nonlinear vibration of a nanobeam elastically bonded with a piezoelectric nanobeam via strain gradient theory. International Journal of Mechanical Sciences, 100, 32-40(2015) [13] LI, Y. S. and FENG, W. J. Microstructure-dependent piezoelectric beam based on modified strain gradient theory. Smart Materials and Structures, 23, 095004(2014) [14] DEHKORDI, S. F. and BENI, Y. T. Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. International Journal of Mechanical Sciences, 128, 125-139(2017) [15] LI, Y. S. and PAN, E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. International Journal of Engineering Science, 97, 40-59(2015) [16] MALIKAN, M. Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Applied Mathematical Modelling, 48, 196-207(2017) [17] AREFI, M. Analysis of a doubly curved piezoelectric nano shell:nonlocal electro-elastic bending solution. European Journal of Mechanics A-Solids, 70, 226-237(2018) [18] ZHANG, L., GUO, J., and XING, Y. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132, 278-302(2018) [19] ZHANG, L., GUO, J., and XING, Y. Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory. Acta Mechanica Solida Sinica, 34, 237-251(2020) [20] LI, Y. D., BAO, R., and CHEN, W. Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force:is nonlocal effect really always dominant? Composite Structures, 194, 357-364(2018) [21] SUN, J., WANG, Z., ZHOU, Z., XU, X., and LIM, C. W. Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model. Applied Mathematical Modelling, 59, 341-356(2018) [22] CHEN, L., KE, L. L., JIE, Y., KITIPORNCHAI, S., and WANG, Y. S. Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory. Mechanics of Advanced Materials and Structures, 25, 1252-1264(2018) [23] MAO, J. J., LU, H. M., ZHANG, W., and LAI, S. K. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Composite Structures, 236, 111813(2020) [24] ZENG, S., WANG, K., WANG, B., and WU, J. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41, 859-880(2020) https://doi.org/10.1007/s10483-020-2620-8 [25] ATKINSON, C. A remark on non-local theories of elasticity, piezoelectric materials etc. International Journal of Engineering Science, 97, 95-97(2015) [26] GHAYESH, M. H. and FAROKHI, H. Nonlinear broadband performance of energy harvesters. International Journal of Engineering Science, 147, 103202(2020) [27] BENVENUTI, E. and SIMONE, A. One-dimensional nonlocal and gradient elasticity:closed-form solution and size effect. Mechanics Research Communications, 48, 46-51(2013) [28] CHALLAMEL, N. and WANG, C. M. The small length scale effect for a non-local cantilever beam:a paradox solved. Nanotechnology, 19, 345703(2008) [29] FERNANDEZ-SAEZ, J., ZAERA, R., LOYA, J. A., and REDDY, J. N. Bending of Euler-Bernoulli beams using Eringen's integral formulation:a paradox resolved. International Journal of Engineering Science, 99, 107-116(2016) [30] LI, C., YAO, L. Q., CHEN, W. Q., and LI, S. Comments on nonlocal effects in nano-cantilever beams. International Journal of Engineering Science, 87, 47-57(2015) [31] REDDY, J. N. and PANG, S. D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 103, 023511(2008) [32] ROMANO, G., BARRETTA, R., DIACO, M., and DE SCIARRA, F. M. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151-156(2017) [33] ROMANO, G. and BARRETTA, R. Nonlocal elasticity in nanobeams:the stress-driven integral model. International Journal of Engineering Science, 115, 14-27(2017) [34] WANG, Y. B., ZHU, X. W., and DAI, H. H. Exact solutions for the static bending of EulerBernoulli beams using Eringen's two-phase local/nonlocal model. AIP Advances, 6, 085114(2016) [35] WANG, Y. B., HUANG, K., ZHU, X., and LOU, Z. Exact solutions for the bending of Timoshenko beams using Eringen's two-phase nonlocal model. Mathematics and Mechanics of Solids, 24, 559-572(2019) [36] ERINGEN, A. C. Theory of nonlocal elasticity and some applications. Res Mechanica, 21, 313-342(1987) [37] ZHANG, P., QING, H., and GAO, C. Theoretical analysis for static bending of circular EulerBernoulli beam using local and Eringen's nonlocal integral mixed model. Zeitschrift für Angewandte Mathematik und Mechanik, 99, e201800329(2019) [38] ZHANG, P. and QING, H. Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model. Acta Mechanica, 231, 5251-5276(2020) [39] MENG, L. C., ZOU, D. J., LAI, H., GUO, Z. L., HE, X. Z., XIE, Z. J., and GAO, C. F. Semi-analytic solution of Eringen's two-phase local/nonlocal model for Euler-Bernoulli beam with axial force. Applied Mathematics and Mechanics (English Edition), 39, 1805-1824(2018) https://doi.org/10.1007/s10483-018-2395-9 [40] OSKOUIE, M. F., ANSARI, R., and ROUHI, H. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models:a numerical approach. Acta Mechanica Sinica, 34, 871-882(2018) [41] OSKOUIE, M. F., ANSARI, R., and ROUHI, H. Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams. European Physical Journal Plus, 133, 336(2018) [42] ZHANG, J., QING, H., and GAO, C. Exact and asymptotic bending analysis of microbeams under different boundary conditions using stress-derived nonlocal integral model. Zeitschrift für Angewandte Mathematik und Mechanik, 100, e201900148(2020) [43] ZHANG, P., QING, H., and GAO, C. F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Composite Structures, 245, 112362(2020) [44] BARRETTA, R., LUCIANO, R., DE SCIARRA, F. M., and RUTA, G. Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. European Journal of Mechanics A-Solids, 72, 275-286(2018) [45] BARRETTA, R., CAPORALE, A., FAGHIDIAN, S. A., LUCIANO, R., DE SCIARRA, F. M., and MEDAGLIA, C. M. A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Composites Part B-Engineering, 164, 590-598(2019) [46] YANG, J. S. The Mechanics of Piezoelectric Structures, World Scientific Publishing Company, Singapore (2006) [47] WANG, Q. On buckling of column structures with a pair of piezoelectric layers. Engineering Structures, 24, 199-205(2002) [48] CHEN, C. N. The Timoshenko beam model of the differential quadrature element method. Computational Mechanics, 24, 65-69(1999) [49] WU, T. Y. and LIU, G. R. The generalized differential quadrature rule for fourth-order differential equations. International Journal for Numerical Methods in Engineering, 50, 1907-1929(2001) [50] WANG, X. Novel differential quadrature element method for vibration analysis of hybrid nonlocal Euler-Bernoulli beams. Applied Mathematics Letters, 77, 94-100(2018) [51] KE, L. L. and WANG, Y. S. Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Materials & Structures, 21, 025018(2012) |