[1] CHATTERJEE, A. and CHINTHA, H. P. Identification and parameter estimation of asymmetric nonlinear damping in a single-degree-of-freedom system using Volterra series. Journal of Vibration Engineering & Technologies, 9, 817-843(2021) [2] BELOUSOV, R., BERGER, F., and HUDSPETH, A. J. Volterra-series approach to stochastic nonlinear dynamics:the Duffing oscillator driven by white noise. Physical Review E, 99(4), 042204(2019) [3] JING, X. J., LANG, Z. Q., and BILLINGS, S. A. Output frequency properties of nonlinear systems. International Journal of Non-Linear Mechanics, 45(7), 681-690(2010) [4] PENG, Z. K. and CHENG, C. M. Volterra series theory:a state-of-the-art review (in Chinese). Chinese Science Bulletin, 20, 1874-1888(2015) [5] CHENG, C. M., PENG, Z. K., ZHANG, W. M., and MENG, G. Volterra-series-based nonlinear system modeling and its engineering applications:a state-of-the-art review. Mechanical Systems and Signal Processing, 87, 340-364(2017) [6] JING, X. J. and LANG, Z. Q. Frequency Domain Analysis and Design of Nonlinear Systems Based on Volterra Series Expansion, Springer, Switzerland (2015) [7] WEN, Y. K. Equivalent linearization for hysteretic systems under random excitation. Journal of Applied Mechanics, 47(1), 150-154(1980) [8] PROPPE, C., PRADLWARTER, H. J., and SCHUËLLER, G. I. Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probabilistic Engineering Mechanics, 18(1), 1-15(2003) [9] SOIZE, C. Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems:prediction and identification procedures. Probabilistic Engineering Mechanics, 10(3), 143-152(1995) [10] ZHU, W. Q. Stochastic averaging methods in random vibration. Applied Mechanics Reviews, 41(5), 189-199(1988) [11] ROBERTS, J. B. and SPANOS, P. D. Stochastic averaging:an approximate method of solving random vibration problems. International Journal of Non-Linear Mechanics, 21(2), 111-134(1986) [12] CHEN, L., ZHU, H., and SUN, J. Q. Novel method for random vibration analysis of singledegree-of-freedom vibroimpact systems with bilateral barriers. Applied Mathematics and Mechanics (English Edition), 40(12), 1759-1776(2019) https://doi.org/10.1007/s10483-019-2543-5 [13] XUE, J. R., ZHANG, Y. W., DING, H., and CHEN, L. Q. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Applied Mathematics and Mechanics (English Edition), 41(1), 1-14(2020) https://doi.org/10.1007/s10483-020-2560-6 [14] PSAROS, A. F., PETROMICHELAKIS, I., and KOUGIOUMTZOGLOU, I. A. Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response determination of structural systems. Mechanical Systems and Signal Processing, 128, 551-571(2019) [15] PSAROS, A. F., KOUGIOUMTZOGLOU, I. A., and PETROMICHELAKIS, I. Sparse representations and compressive sampling for enhancing the computational efficiency of the Wiener path integral technique. Mechanical Systems and Signal Processing, 111, 87-101(2018) [16] PENG, Z. K., ZHANG, W. M., YANG, B. T., MENG, G., and CHU, F. L. The parametric characteristic of bispectrum for nonlinear systems subjected to Gaussian input. Mechanical Systems and Signal Processing, 36(2), 456-470(2013) [17] DONG, X. J., PENG, Z. K., ZHANG, W. M., MENG, G., and CHU, F. L. Parametric characteristic of the random vibration response of nonlinear systems. Acta Mechanica Sinica, 29(2), 267-283(2013) [18] CHENG, C. M., PENG, Z. K., and MENG, G. Random vibration frequency response analysis of nonlinear systems based on Volterra series (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 43(5), 905-913(2011) [19] ZHU, W. Q. Random Vibration (in Chinese), Science Press, Beijing (1992) [20] DENG, J. Higher-order stochastic averaging for a SDOF fractional viscoelastic system under bounded noise excitation. Journal of the Franklin Institute, 354(17), 7917-7945(2017) [21] HU, F., CHEN, L. C., and ZHU, W. Q. Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation. International Journal of Non-Linear Mechanics, 47(10), 1081-1087(2012) [22] FENG, C. S. and LIU, R. Response of Duffing system with delayed feedback control under bounded noise excitation. Archive of Applied Mechanics, 82(12), 1753-1761(2012) [23] ZHANG, W. M., MENG, G., and PENG, Z. K. Nonlinear dynamic analysis of atomic force microscopy under bounded noise parametric excitation. IEEE/ASME Transactions on Mechatronics, 16(6), 1063-1072(2011) [24] VOLTERRA, V. Theory of Functionals and of Integral and Integro Differential Equations, Dover, New York (1959) [25] GEORGE D. Continuous nonlinear systems. Massachusetts Institute of Technology Research Laboratory of Electronics, Cambridge Press, Massachusetts (1959) [26] RUGH, W. J. Nonlinear System Theory-the Volterra/Wiener Approach, The Johns Hopkins University Press, Washington, D. C. (1981) [27] MOORE, P. G., LANING, J. H., and BATTIN, R. H. Random processes in automatic control. Journal of the Royal Statistical Society Series A, 120(4), 483(1957) [28] WORDEN, K. and TOMLINSON, G. R. Nonlinearity in Structural Dynamics:Detection, Identification and Modelling, Institute of Physics Publishing, Bristol and Philadelphia (2001) [29] ZHU, Y. P. and LANG, Z. Q. A new convergence analysis for the Volterra series representation of nonlinear systems. Automatica, 111, 108599(2020) [30] DALZELL, J. F. Estimation of the spectrum of non-linear ship rolling:the functional series approach. National Technical Information Service, SIT-DL-76-1894(1976) [31] CHATTERJEE, A. and CHINTHA, H. P. Identification and parameter estimation of cubic nonlinear damping using harmonic probing and Volterra series. International Journal of Non-Linear Mechanics, 125, 103518(2020) [32] SMITH, W. and RUGH, W. On the structure of a class of nonlinear systems. IEEE Transactions on Automatic Control, 19(6), 701-706(1974) [33] KOWALSKI, K. and STEEB, W. H. Nonlinear Dynamical Systems and Carleman Linearization, World Scientific, Singapore (1991) [34] PEI, J. S., SMYTH, A. W., and KOSMATOPOULOS, E. B. Analysis and modification of Volterra/Wiener neural networks for the adaptive identification of non-linear hysteretic dynamic systems. Journal of Sound and Vibration, 275(3-5), 693-718(2004) [35] SHINOZUKA, M. and DEODATIS, G. Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews, 44(4), 191-204(1991) [36] CHO, W. S. T. Nonlinear Random Vibration:Analytical Techniques and Applications, CRC Press, Boca Raton (2000) [37] ONCEN, T., LAMBELIN, J. P., and SINOU, J. J. Nonlinear vibrations of a beam with nonideal boundary conditions and stochastic excitations-experiments, modeling and simulations. Communications in Nonlinear Science and Numerical Simulation, 74, 14-29(2019) |