1 |
NAYFEH, A. H. Perturbation Methods, John Wiley & Sons, New York 35- 37 (2000)
|
2 |
ANDERSON, J. D., JR. Fundamentals of Aerodynamics, 6th ed. McGraw-Hill, New York 997- 1012 (2017)
|
3 |
ANDERSON, J. D., JR. Hypersonic and High-Temperature Gas Dynamics, 2nd ed. AIAA Education, Reston 261- 374 (2006)
|
4 |
WHITE, F. M. Fluid Mechanics, 8th ed. McGraw-Hill Education, New York 449- 520 (1979)
|
5 |
CHIEN, W. Z. Large deflection of a circular clamped plate under uniform pressure. Chinese Journal of Physics, 7 (2), 102- 113 (1947)
|
6 |
CHIEN, W. Z., and YEH, K. Y. On the large deflection of circular plate. Acta Physica Sinica, 10 (3), 209- 238 (1954)
|
7 |
RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686- 707 (2019)
|
8 |
KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3 (6), 422- 440 (2021)
|
9 |
LU, L., MENG, X., MAO, Z., and KARNIADAKIS, G. E. DeepXDE: a deep learning library for solving differential equations. SIAM Review, 63 (1), 208- 228 (2021)
|
10 |
CHIEN, W. Z. Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection. Science Reports of the National Tsing Hua University, 5, 193- 208 (1948)
|
11 |
VAN DYKE, M. Higher approximations in boundary-layer theory, part 1, general analysis. Journal of Fluid Mechanics, 14 (2), 161- 177 (1962)
|
12 |
VAN DYKE, M. Higher approximations in boundary-layer theory, part 2, application to leading edges. Journal of Fluid Mechanics, 14 (4), 481- 495 (1962)
|
13 |
VAN DYKE, M. Higher approximations in boundary-layer theory, part 3, parabola in uniform stream. Journal of Fluid Mechanics, 19 (1), 145- 159 (1964)
|
14 |
MILES, J. W. Fluid mechanics and singular perturbations: a collection of papers by Saul Kaplun. Journal of Fluid Mechanics, 36 (1), 207- 208 (1969)
|
15 |
LATTA, G. E. Singular Perturbation Problems, Ph. D. dissertation, California Institute of Technology (1951)
|
16 |
BROMBERG, E., and STOKER, J. J. Nonlinear theory of curved elastic sheets. Quarterly of Applied Mathematics, 3 (3), 246- 265 (1945)
|
17 |
VISHIK, M. I., and LYUSTERNIK, L. A. Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi Matematicheskikh Nauk, 12 (5), 3- 122 (1957)
|
18 |
RAISSI, M., YAZDANI, A., and KARNIADAKIS, G. E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science, 367 (6481), 1026- 1030 (2020)
|
19 |
WANG, H., LIU, Y., and WANG, S. Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network. Physics of Fluids, 34 (1), 017116 (2022)
|
20 |
REYES, B., HOWARD, A. A., PERDIKARIS, P., and TARTAKOVSKY, A. M. Learning unknown physics of non-Newtonian fluids. Physical Review Fluids, 6 (7), 073301 (2021)
|
21 |
HAGHIGHAT, E., RAISSI, M., MOURE, A., GOMEZ, H., and JUANES, R. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379, 113741 (2021)
|
22 |
HORNIK, K., STINCHCOMBE, M., and WHITE, H. Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5), 359- 366 (1989)
|
23 |
CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2 (4), 303- 314 (1989)
|
24 |
ZHANG, L., CHENG, L., LI, H., GAO, J., YU, C., DOMEL, R., YANG, Y., and LIU, W. K. Hierarchical deep-learning neural networks: finite elements and beyond. Computational Mechanics, 67, 207- 230 (2021)
|
25 |
TANG, S., and YANG, Y. Why neural networks apply to scientific computing?. Theoretical and Applied Mechanics Letters, 11 (3), 100242 (2021)
|
26 |
ZHANG, L., and HE, G. Multi-scale-matching neural networks for thin plate bending problem. Theoretical and Applied Mechanics Letters, 14 (1), 94 (1004)
|
27 |
ARZANI, A., CASSEL, K. W., and D'SOUZA, R. M. Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation. Journal of Computational Physics, 473, 111768 (2023)
|
28 |
HUANG, J., QIU, R., WANG, J., and WANG, Y. Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions. Theoretical and Applied Mechanics Letters, 14 (2), 96 (1004)
|
29 |
BAYDIN, A. G., PEARLMUTTER, B. A., RADUL, A. A., and SISKIND, J. M. Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research, 18, 153 (2018)
|
30 |
PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z., LIN, Z., DESMAISON, A., ANTIGA, L., and LERER, A. Automatic differentiation in PyTorch. Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, U. S. A. (2017)
|
31 |
NOCEDAL, J. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35 (151), 773- 782 (1980)
|
32 |
KINGMA, D. and BA, J. Adam: a method for stochastic optimization. arXiv Preprint, arXiv: 1412.6980 (2014) https://doi.org/10.48550/arXiv.1412.6980
|
33 |
GLOROT, X., and BENGIO, Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 9, 249- 256 (2010)
|
34 |
ALZHEIMER, W. E., and DAVIS, R. T. Unsymmetrical bending of prestressed annular plates. Journal of the Engineering Mechanics Division, 94 (4), 905- 918 (1968)
|
35 |
TIMOSHENKO, S., and WOINOWSKY-KRIEGER, S. Theory of Plates and Shells, 2nd ed. McGraw-Hill, New York 415- 419 (1959)
|