1 |
ZHAO, Q., TAO, L., and XU, H. Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field. Applied Mathematics and Mechanics (English Edition), 44 (11), 1957- 1972 (2023)
doi: 10.1007/s10483-023-3048-7
|
2 |
XU, H. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition. Applied Mathematics and Mechanics (English Edition), 43 (1), 113- 126 (2022)
doi: 10.1007/s10483-021-2801-6
|
3 |
HUMNEKAR, N., and SRINIVASACHARYA, D. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel. Applied Mathematics and Mechanics (English Edition), 45 (3), 563- 580 (2024)
doi: 10.1007/s10483-024-3096-6
|
4 |
RIASAT, S., RAMZAN, M., SALEEL, C. A., EL-SHORBAGY, M. A., KADRY, S., SAEED, A. M., and ELDIN, S. M. A comparative analysis of dovetail and rectangular fins with insulated tips wetted with ZnO-SAE 50 nanolubricant for energy transfer process. Case Studies in Thermal Engineering, 51, 103576 (2023)
|
5 |
RAMZAN, M., RIASAT, S., GHAZWANI, H. A. S., PASHA, A. A., ISLAM, N., and ALJURBUA, S. F. Performance comparison appraisal of a fully wetted longitudinal fin of different profiles with variable thermal conductivities. International Communications in Heat and Mass Transfer, 138, 106354 (2022)
|
6 |
PAVITHRA, C. G., GIREESHA, B. J., and KEERTHI, M. L. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid. Applied Mathematics and Mechanics (English Edition), 45 (1), 197- 216 (2024)
doi: 10.1007/s10483-024-3069-6
|
7 |
GIREESHA, B. J., KEERTHI, M. L., and SOWMYA, G. Effects of stretching/shrinking on the thermal performance of a fully wetted convective-radiative longitudinal fin of exponential profile. Applied Mathematics and Mechanics (English Edition), 43 (3), 389- 402 (2022)
doi: 10.1007/s10483-022-2836-6
|
8 |
WASEEM, W., SULAIMAN, M., ISLAM, S., KUMAM, P., NAWAZ, R., RAJA, M. A. Z., FAROOQ, M., and SHOAIB, M. A study of changes in temperature profile of porous fin model using cuckoo search algorithm. Alexandria Engineering Journal, 59 (1), 11- 24 (2020)
|
9 |
DAS, R., and KUNDU, B. Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer, 127, 105497 (2021)
|
10 |
NABATI, M., JALALVAND, M., and TAHERIFAR, S. Sinc collocation approach through thermal analysis of porous fin with magnetic field. Journal of Thermal Analysis and Calorimetry, 144, 2145- 2158 (2021)
|
11 |
ULLAH, I., ULLAH, S., ALI, A., SHAH, S. I., WEERA, W., and ALAM, M. M. Heat transfer analysis from moving convection-radiative triangular porous fin exposed to heat generation. Case Studies in Thermal Engineering, 38, 102177 (2022)
|
12 |
PATI, S., BORAH, A., BORUAH, M. P., and RANDIVE, P. R. Critical review on local thermal equilibrium and local thermal non-equilibrium approaches for the analysis of forced convective flow through porous media. International Communications in Heat and Mass Transfer, 132, 105889 (2022)
|
13 |
LIU, X., TONG, Z. X., and HE, Y. L. Enthalpy-based immersed boundary-lattice Boltzmann model for solid-liquid phase change in porous media under local thermal non-equilibrium condition. International Journal of Thermal Sciences, 182, 107786 (2022)
|
14 |
KADHIM, H. T., AL-MANEA, A., AL-SHAMANI, A. N., and YUSAF, T. Numerical analysis of hybrid nanofluid natural convection in a wavy walled porous enclosure: local thermal non-equilibrium model. International Journal of Thermofluids, 15, 100190 (2022)
|
15 |
YERRAMALLE, V., PREMACHANDRAN, B., and TALUKDAR, P. Mixed convection from a heat source in a channel with a porous insert: a numerical analysis based on local thermal non-equilibrium model. Thermal Science and Engineering Progress, 25, 101010 (2021)
|
16 |
LAGARIS, I. E., LIKAS, A., and FOTIADIS, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9 (5), 987- 1000 (1998)
|
17 |
RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686- 707 (2019)
|
18 |
KRISHNAPRIYAN, A., GHOLAMI, A., ZHE, S., KIRBY, R., and MAHONEY, M. W. Characterizing possible failure modes in physics-informed neural networks. Advances in Neural Information Processing Systems, 34, 26548- 26560 (2021)
|
19 |
CAI, S., MAO, Z., WANG, Z., YIN, M., and KARNIADAKIS, G. E. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica, 37 (12), 1727- 1738 (2021)
|
20 |
WANG, X., WEN, H., HU, T., and WANG, B. Flow-field reconstruction in rotating detonation combustor based on physics-informed neural network. Physics of Fluids, 35 (7), 076109 (2023)
|
21 |
CAI, S., WANG, Z., WANG, S., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks for heat transfer problems. Journal of Heat Transfer, 143 (6), 125089 (2021)
|
22 |
NGUYEN, T. N. K., DAIRAY, T., MEUNIER, R., and MOUGEOT, M. Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: an application to rubber calendering process. Engineering Applications of Artificial Intelligence, 114, 105176 (2022)
|
23 |
BUONOMO, B., CASCETTA, F., MANCA, O., and SHEREMET, M. Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model. Applied Thermal Engineering, 195, 117237 (2021)
|
24 |
JALILI, P., ALAMDARI, S. G., JALILI, B., SHATERI, A., and GANJI, D. D. Analytical and numerical investigation of heat transfer of porous fin in a local thermal non-equilibrium state. Heliyon, 10 (4), e2024 (2024)
|
25 |
KIWAN, S. Effect of radiative losses on the heat transfer from porous fins. International Journal of Thermal Sciences, 46 (10), 1046- 1055 (2007)
|
26 |
DAS, R., and KUNDU, B. Prediction of heat generation in a porous fin from surface temperature. Journal of Thermophysics and Heat Transfer, 31 (4), 781- 790 (2017)
|
27 |
WAZWAZ, A. M. A new method for solving singular initial value problems in the second-order ordinary differential equations. Applied Mathematics and Computation, 128 (1), 45- 57 (2002)
|
28 |
KARIMI VANANI, S., and AMINATAEI, A. On the numerical solution of differential equations of Lane-Emden type. Computers & Mathematics with Applications, 59 (8), 2815- 2820 (2010)
|