Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (9): 1655-1664.doi: https://doi.org/10.1007/s10483-024-3142-9
• • 上一篇
收稿日期:
2024-04-18
出版日期:
2024-09-01
发布日期:
2024-08-27
Yurun WU1, Lu LI1, Lianhe LI1,2,3,*()
Received:
2024-04-18
Online:
2024-09-01
Published:
2024-08-27
Contact:
Lianhe LI
E-mail:nmglilianhe@163.com
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1655-1664.
Yurun WU, Lu LI, Lianhe LI. Study on the effective elastic performance of composites containing decagonal symmetric two-dimensional quasicrystal coatings[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1655-1664.
1 | SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53 (20), 1951- 1954 (1984) |
2 | FAN, T. Mathematical Theory of Elasticity of Quasicrystals and Its Applications, Science Press, Beijing (2011) |
3 | STEINHARDT, P. J. and OSTLUND, S. The Physics of Quasicrystals, World Scientific, Singapore (1987) |
4 | TREBIN, H. R. Quasicrystals: Structure and Physical Properties, Wiley, Berlin (2003) |
5 | LEVINE, D., and STEINHARDT, P. J. Quasicrystals: a new class of ordered structures. Physical Review Letters, 53 (25), 2477- 2480 (1984) |
6 | LOUZGUINE-LUZGIN, D. V., and INOUE, A. Formation and performance of quasicrystals. Annual Review of Materials Research, 38, 403- 423 (2008) |
7 | LEVINE, D., and STEINHARDT, P. J. Quasicrystals, Ⅰ: definition and structure. Physical Review B, 34 (2), 596- 618 (1986) |
8 | LIU, Y. Y., FU, X. J., and DONG, X. Q. Physical performance of one-dimensional quasicrystals. Progress in Physics, 17, 1- 63 (1997) |
9 | DUBOIS, J. M. So useful, those quasicrystals. Israel Journal of Chemistry, 51 (11-12), 1168- 1175 (2011) |
10 | HU, C. Z., YANG, W. G., WANG, R. H., and DING, D. H. Symmetry and physical performance of quasicrystals. Progress in Physics, 17 (4), 345- 376 (1997) |
11 | LI, Y., ZHAO, M. H., FAN, C. Y., and XU, G. T. Analysis of arbitrarily shaped planar cracks in two-dimensional hexagonal quasicrystals with thermal effects, part Ⅰ: theoretical solutions. Applied Mathematical Modelling, 57, 583- 602 (2018) |
12 | LI, X. Y., WANG, Y. W., LI, P. D., KANG, G. Z., and MÜLLER, R. Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack. Theoretical and Applied Fracture Mechanics, 88, 18- 30 (2017) |
13 | ZHANG, X., FAN, C. Y., LU, C. S., ZHAO, M. H., and DANG, H. Y. Three-dimensional thermal fracture analysis of a one-dimensional hexagonal quasicrystal coating with interface cracks. Engineering Fracture Mechanics, 277, 108994 (2023) |
14 |
ZHAO, M. H., FAN, C. Y., LU, C. S., and DANG, H. Y. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure. Applied Mathematics and Mechanics (English Edition), 42 (11), 1633- 1648 (2021)
doi: 10.1007/s10483-021-2786-5 |
15 | HOU, P. F., and ZHANG, Y. Study on the piezoelectric coated devices based on the 2D Green's functions under a tangential line force. Journal of Applied Mathematics and Physics, 69 (2), 48 (2018) |
16 | WANG, L., GUO, J. H., WANG, Y. N., and YANG, H. Effective mechanical performance of rare earth quasicrystal reinforced nanocomposites with imperfect interfaces (in Chinese). Journal of Inner Mongolia University (Natural Science Edition), 54 (2), 132- 141 (2023) |
17 | DANG, H. Y., LV, S. Y., FAN, C. Y., LU, C. S., REN, J. L., and ZHAO, M. H. Analysis of anti-plane interface cracks in one-dimensional hexagonal quasicrystal coating. Applied Mathematical Modelling, 81, 641- 652 (2020) |
18 | LIPINSKI, P., BARHDADI, E. H., and CHERKAOUI, M. Micromechanical modelling of an arbitrary ellipsoidal multi-coated inclusion. Philosophical Magazine, 86 (10), 1305- 1326 (2006) |
19 | KOUTSAWA, Y., CHERKAOUI, M., and DAYA, E. M. Multicoating inhomogeneities problem for effective viscoelastic performance of particulate composite materials. Journal of Engineering Materials and Technology, 131, 2- 5 (2009) |
20 | LIPINSKI, P., BARHDADI, E. H., and CHERKAOUI, M. Micromechanical modelling of an arbitrary ellipsoidal multi-coated inclusion. Philosophical Magazine, 86 (10), 1305- 1326 (2006) |
21 | BENVENISTE, Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of Materials, 6 (2), 147- 157 (1987) |
22 | CHERKAOUI, M., SABAR, H., and BERVEILLER, M. Elastic composites with coated reinforcements: a micromechanical approach for non-homothetic topology. International Journal of Engineering Science, 33 (6), 829- 843 (1995) |
23 | DAI, L. H., HUANG, Z. P., and WANG, R. Generalized self-consistent Mori-Tanaka model and effective modulus of coated inclusion composite materials (in Chinese). Journal of Solid Mechanics, 20 (3), 187- 194 (1990) |
24 | BAKKALI, A., and AZRAR, L. Micromechanical modeling of magneto-electro-elastic composite materials with multicoated inclusions and functionally graded interphases. Journal of Intelligent Material Systems and Structures, 24 (14), 1754- 1769 (2013) |
25 | BAKKALI, A., AZRAR, L., and ALJINADI, A. A. Effective properties of heterogeneous magneto-electro-elastic materials with multi-coated inclusions. Key Engineering Materials, 550, 25- 32 (2013) |
26 | HILL, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13 (4), 213- 222 (1965) |
27 | WANG, Z., ZHU, J., JIN, X. Y., CHEN, W. Q., and ZHANG, C. Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. Journal of the Mechanics and Physics of Solids, 65 (12), 138- 156 (2013) |
28 | DEEG, W. F. J. The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids, Ph. D. dissertation, Stanford University (1980) |
29 | DUNN, M. L. Electro-elastic Green's functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. International Journal of Engineering Science, 32, 119- 131 (1994) |
30 | ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion. and related problems. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 241 (1226), 376- 396 (1957) |
31 | DUNN, M. L., and TAYA, M. An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 443 (1918), 265- 287 (1993) |
32 | DINZART, F., and SABAR, H. Electro-elastic behavior of piezoelectric composites with coated reinforcements: micromechanical approach and applications. International Journal of Solids and Structures, 46 (20), 3556- 3564 (2009) |
33 | HE, K. H., YAN, Q. L., JI, G. F., and YU, F. Study on the elastic performance and phase stability of yttrium under high pressure (in Chinese). Journal of Sichuan Normal University (Natural Science), 28 (2), 202- 205 (2005) |
34 | XU, Z. C., FENG, Z. X., SHI, Q. N., and YANG, Y. X. First-principles calculations of the electronic structure and elastic performance of 14H-LPSO and W phases in Mg-Zn-Y alloy. Material Guide, 32 (6), 1026- 1031 (2018) |
35 | WU, D., ZHANG, L. L., XU, W. S., YANG, L. Z., and GAO, Y. Electro-elastic Green's function of one-dimensional piezoelectric quasicrystals subjected to multi-physics loads. Journal of Intelligent Material Systems and Structures, 28 (12), 1651- 1661 (2017) |
36 | HUANG, J. H., and KUO, W. S. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics, 81 (3), 1378- 1386 (1997) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1539-1556. |
[2] | Tuoya SUN, Junhong GUO, E. PAN. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1077-1094. |
[3] | Zhina ZHAO, Junhong GUO. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 625-640. |
[4] | Yongbin WANG, Junhong GUO. Effective electroelastic constants for three-phase confocal elliptical cylinder model in piezoelectric quasicrystal composites[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(6): 797-812. |
[5] | Tuoya SUN, Junhong GUO, Xiaoyan ZHANG. Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 335-352. |
[6] | Shuang LI, Lianhe LI. Effective elastic properties of one-dimensional hexagonal quasicrystal composites[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1439-1448. |
[7] | Xin FENG, Liangliang ZHANG, Yuxuan WANG, Jinming ZHANG, Han ZHANG, Yang GAO. Static response of functionally graded multilayered two-dimensional quasicrystal plates with mixed boundary conditions[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1599-1618. |
[8] | Minghao ZHAO, Cuiying FAN, C. S. LU, Huayang DANG. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1633-1648. |
[9] | Miao ZHANG, Junhong GUO, Yansong LI. Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via modified couple-stress theory[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 371-388. |
[10] | Xiang MU, Xiaoyu FU, Liangliang ZHANG, Zhaowei ZHU, Jinming ZHANG, Yang GAO. Fundamental solutions of critical wedge angles for one-dimensional piezoelectric quasicrystal wedge[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 709-728. |
[11] | Xin ZHANG, Minghao ZHAO, Cuiying FAN, C. S. LU, Huayang DANG. Three-dimensional interfacial fracture analysis of a one-dimensional hexagonal quasicrystal coating[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1901-1920. |
[12] | Huayang DANG, Dongpei QI, Minghao ZHAO, Cuiying FAN, C.S. LU. Thermal-induced interfacial behavior of a thin one-dimensional hexagonal quasicrystal film[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 841-856. |
[13] | Yunzhi HUANG, Wenqing ZHENG, Xiuhua CHEN, Miaolin FENG. Analytic solution of quasicrystal microsphere considering the thermoelectric effect and surface effect in the elastic matrix[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1331-1350. |
[14] | Xin FENG, Liaoliang KE, Yang GAO. Love wave propagation in one-dimensional piezoelectric quasicrystal multilayered nanoplates with surface effects[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 619-632. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||