1 |
JINFENG, R., LIN, W., and PEI, L. Summary of research on supporting facilities and structure vibration and noise reduction of high-rise buildings. IOP Conference Series: Earth and Environmental Science, 791 (1), 012023 (2021)
|
2 |
LIN, X., PAN, F., YANG, K., GUAN, J., DING, B., LIU, Y., YANG, K., LIU, B., and CHEN, Y. A stair-building strategy for tailoring mechanical behavior of re-customizable metamaterials. Advanced Functional Materials, 31 (37), 2101808 (2021)
|
3 |
MAYANI, M. G., HERRAIZ-MARTÍNEZ, F. J., DOMINGO, J. M., and GIANNETTI, R. Resonator-based microwave metamaterial sensors for instrumentation: survey, classification, and performance comparison. IEEE Transactions on Instrumentation and Measurement, 70, 1- 14 (2021)
|
4 |
KONE, T. C., GHINET, S., PANNETON, R., and GREWA, A. Optimization of metamaterials with complex neck shapes for aircraft cabin noise improvement. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 263 (2), 3963- 3974 (2021)
|
5 |
PALLAVI, M., KUMAR, P., ALI, T., and SHENOY, S. B. Modeling of a negative refractive index metamaterial unit-cell and array for aircraft surveillance applications. IEEE Access, 10, 99790- 99812 (2022)
|
6 |
KONE, T. C., GHINET, S., PANNETON, R., LALY, Z., MECHEFSKE, C., and GREWAL, A. Control and broadening of multiple noise frequencies using an assembly of sub-metamaterials connected by membranes for aircraft noise mitigation. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 265 (3), 4607- 4615 (2023)
|
7 |
AMER, Y. A., EL-SAYED, A. T., and AHMED, E. E. Vibration reduction of a non-linear ship model using positive position feedback controllers. International Journal of Dynamics and Control, 10 (2), 409- 426 (2022)
|
8 |
LIU, S., ZHANG, X., and WANG, R. Analysis of influence of imbricated damping rubber block on vibration and noise reduction of high-speed railway wheels. Journal of Applied Acoustics, 39 (1), 128- 132 (2020)
|
9 |
HAN, D., ZHANG, G., ZHAO, J., YAO, H., and LIU, H. Study on band gap and sound insulation characteristics of an adjustable helmholtz resonator. Applied Sciences, 12 (9), 4512 (2022)
|
10 |
NAGAYA, K., KURUSU, A., IKAI, S., and SHITANI, Y. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. Journal of Sound and Vibration, 228, 773- 792 (1999)
|
11 |
LIN, S., ZHANG, Y., LIANG, Y., LIU, Y., LIU, C., and YANG, Z. Bandgap characteristics and wave attenuation of metamaterials based on negative-stiffness dynamic vibration absorbers. Journal of Sound and Vibration, 502, 116088 (2021)
|
12 |
SIGALAS, M., and ECONOMOU, E. N. Band structure of elastic waves in two dimensional systems. Solid State Communications, 86 (3), 141- 143 (1993)
|
13 |
KUSHWAHA, M. S., HALEVI, P., DOBRZYNSKI, L., and DJAFARI-ROUHANI, B. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71 (13), 2022- 2025 (1993)
|
14 |
VAN BELLE, L., CLAEYS, C., DECKERS, E., and DESMET, W. On the impact of damping on the dispersion curves of a locally resonant metamaterial: modelling and experimental validation. Journal of Sound and Vibration, 409, 1- 23 (2017)
|
15 |
LIU, X., and FAN, Y. Band structure characteristics of T-square fractal phononic crystals. Chinese Physics B, 22 (3), 036101 (2013)
|
16 |
WU, Z., LI, F., and ZHANG, C. Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. Journal of Sound and Vibration, 421, 246- 260 (2018)
|
17 |
LU, M. H., ZHANG, C., FENG, L., ZHAO, J., CHEN, Y. F., MAO, Y. W., ZI, J., ZHU, Y. Y., ZHU, S. N., and MING, N. B. Negative birefraction of acoustic waves in a sonic crystal. Nature Materials, 6 (10), 744- 748 (2007)
|
18 |
ZHANG, S., YIN, L., and FANG, N. Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters, 102 (19), 194301 (2009)
|
19 |
YU, G., QIU, Y., LI, Y., WANG, X., and WANG, N. Underwater acoustic stealth by a broadband 2-bit coding metasurface. Physical Review Applied, 15 (6), 064064 (2021)
|
20 |
ZHANG, J., LU, G., and YOU, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review. Composites Part B: Engineering, 201, 108340 (2020)
|
21 |
WANG, Q., LI, Z., ZHANG, Y., CUI, S., YANG, Z., and LU, Z. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability. Composites Part B: Engineering, 202, 108379 (2020)
|
22 |
QUAN, C., HAN, B., HOU, Z., ZHANG, Q., TIAN, X., and LU, T. J. 3D printed continuous fiber reinforced composite auxetic honeycomb structures. Composites Part B: Engineering, 187, 107858 (2020)
|
23 |
TAO, R., JI, L., LI, Y., WAN, Z., HU, W., WU, W., LIAO, B., MA, L., and FANG, D. 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves. Composites Part B: Engineering, 201, 108344 (2020)
|
24 |
CORREA, D. M., KLATT, T., CORTES, S., HABERMAN, M., KOVAR, D., and SEEPERSAD, C. Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping Journal, 21 (2), 193- 200 (2015)
|
25 |
LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. Journal of Sound and Vibration, 330, 2536- 2553 (2011)
|
26 |
GOLDSBERRY, B. M., and HABERMAN, M. R. Negative stiffness honeycombs as tunable elastic metamaterials. Journal of Applied Physics, 123 (9), 091711 (2018)
|
27 |
CHEN, Y., and WANG, Z. W. In-plane elasticity of the re-entrant auxetic hexagonal honeycomb with hollow-circle joint. Aerospace Science and Technology, 123, 107432 (2022)
|
28 |
WANG, H., LU, Z., YANG, Z., and LI, X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Composite Structures, 208, 758- 770 (2019)
|
29 |
ZHANG, Y., XU, X., FANG, J., HUANG, W., and WANG, J. Load characteristics of triangular honeycomb structures with self-similar hierarchical features. Engineering Structures, 257, 114114 (2022)
|
30 |
WANG, Z., DENG, J., LIU, K., and TAO, Y. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Structures, 171, 108816 (2022)
|
31 |
WANG, Y., YU, Y., WANG, C., ZHOU, G., KARAMOOZIAN, A., and ZHAO, W. On the out-of-plane ballistic performances of hexagonal, reentrant, square, triangular and circular honeycomb panels. International Journal of Mechanical Sciences, 173, 105402 (2020)
|
32 |
CHEN, Y., and WANG, L. Harnessing structural hierarchy to design stiff and lightweight phononic crystals. Extreme Mechanics Letters, 9, 91- 96 (2016)
|
33 |
CHEN, Y., JIA, Z., and WANG, L. Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties. Composite Structures, 152, 395- 402 (2016)
|
34 |
LIM, Q. J., WANG, P., KOH, S. J. A., KHOO, E. H., and BERTOLDI, K. Wave propagation in fractal-inspired self-similar beam lattices. Applied Physics Letters, 107 (22), 221911 (2015)
|
35 |
WANG, Z. G., SHI, C., DING, S. S., and LIANG, X. F. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression. Journal of Central South University, 27 (2), 621- 628 (2020)
|
36 |
KARAKOÇ, A., and TACIROGLU, E. Effects of morphology and topology on the effective stiffness of chiral cellular materials in the transverse plane. Advances in Materials Science and Engineering, 2016, 6534648 (2016)
|
37 |
MINIACI, M., KRUSHYNSKA, A., GLIOZZI, A. S., KHERRAZ, N., BOSIA, F., and PUGNO, N. M. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials. Physical Review Applied, 10 (2), 024012 (2018)
|
38 |
ZHU, Z., DENG, Z., and DU, J. Elastic wave propagation in hierarchical honeycombs with woodpile-like vertexes. Journal of Vibration and Acoustics, 141 (4), 041020 (2019)
|
39 |
SUN, P., ZHANG, Z., GUO, H., LIU, N., and WANG, Y. Hierarchical square honeycomb metamaterials with low-frequency broad bandgaps and flat energy bands characteristics. Journal of Applied Physics, 128 (23), 235102 (2020)
|
40 |
LI, S., HAN, S., ZHENG, H., HAN, Q., and LI, C. Hierarchical design and vibration suppression of the hexachiral hybrid acoustic metamaterial. Applied Acoustics, 224, 110145 (2024)
|
41 |
YAN, G., LI, Y., WANG, Y., YIN, G., and YAO, S. Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation. Aerospace Science and Technology, 145, 108872 (2024)
|
42 |
ZHENG, H., HAN, S., LI, S., HAN, Q., and LI, C. A novel multi-resonator honeycomb metamaterial with enhanced impact mitigation. European Journal of Mechanics A/Solids, 105, 105272 (2024)
|
43 |
WANG, S., WANG, A. S., WU, Y. S., LI, X. F., SUN, Y. T., ZHANG, Z. Z., DING, Q., AYALEW, G. D., MA, Y. X., and LIN, Q. Y. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial. Applied Mathematics and Mechanics (English Edition), 45 (7), 1261- 1278 (2024)
doi: 10.1007/s10483-024-3156-8
|