Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 25-36.doi: https://doi.org/10.1007/s10483-025-3210-9
收稿日期:
2024-06-26
修回日期:
2024-12-06
出版日期:
2025-01-03
发布日期:
2025-01-06
Jue ZHU1,2, Longyuan LI3,†(), Ningtao ZHU1,4
Received:
2024-06-26
Revised:
2024-12-06
Online:
2025-01-03
Published:
2025-01-06
Contact:
Longyuan LI
E-mail:long-yuan.li@plymouth.ac.uk
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 25-36.
Jue ZHU, Longyuan LI, Ningtao ZHU. Modification of Maxwell model for conductivity prediction of carbon nanotubes-filled polymer composites with tunneling effect[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 25-36.
"
Parameter | Validation (see | Validation (see | Validation (see | Note |
---|---|---|---|---|
0.35 | 0.35 | 0.35 | Assumed, based on experimental data* | |
50 | 50 | 50 | Assumed, based on experimental data** | |
9.0% | 0.15% | 0.08% | Taken from test data | |
1 800 (CFs), 180 (CNTs) | 650 | 2 500 | Assumed, based on test data | |
Assumed | ||||
Taken from test data | ||||
1.25 | 1.25 | 1.25 | Assumed | |
* According to Refs. [ | ||||
** Although straight CNTs have the aspect ratio |
[1] | CEBECI, H., DE VILLORIA, R. G., HART, A. J., and WARDLE, B. L. Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Composites Science and Technology, 69, 2649–2656 (2009) |
[2] | KIM, H., GAO, S., HONG, S., LEE, P. C., KIM, Y. L., HA, J. U., JEOUNG, S. K., and JUNG, Y. J. Multifunctional primer film made from percolation enhanced CNT/epoxy nanocomposite and ultrathin CNT network. Composites Part B: Engineering, 175, 107107 (2019) |
[3] | JU, J., KUANG, T., KE, X., ZENG, M., CHEN, Z., ZHANG, S., and PENG, X. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Composites Science and Technology, 193, 108116 (2020) |
[4] | YAN, F., LIU, L., LI, M., ZHANG, M. J., SHANG, L., XIAO, L. H., and AO, Y. H. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites. Composites Part A: Applied Science and Manufacturing, 125, 105530 (2019) |
[5] | YUAN, S. Q., ZHENG, Y., CHUA, C. K., YAN, Q. Y. and ZHOU, K. Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Composites Part A: Applied Science and Manufacturing, 105, 203–213 (2018) |
[6] | MÜLLER-KIRSTEN, H. J. W. Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd edition, World Scientific, Singapore (2012) |
[7] | HASHEMI, R. and WENG, G. J. A theoretical treatment of graphene nanocomposites with percolation threshold, tunnelling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon, 96, 474–490 (2016) |
[8] | PAYANDEHPEYMAN, J., MAZAHERI, M., and KHAMEHCHI, M. Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects. Composites Communications, 21, 100364 (2020) |
[9] | HASHIN, Z. Analysis of composite materials — a survey. Applied Mechanics Review, 50(3), 481–505 (1983) |
[10] | TORQUATO, S. Random heterogeneous media: microstructure and improved bounds on effective properties. Applied Mechanics Review, 44(2), 37–76 (1991) |
[11] | LUX, F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science, 28(2), 285–301 (1993) |
[12] | WEBER, L., DORN, J., and MORTENSEN, A. On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Materialia, 51(11), 3199–3211 (2003) |
[13] | HU, N., KARUBE, Y., YAN, C., MASUDA, Z., and FUKUNAGA, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materials, 56(13), 2929–2936 (2008) |
[14] | HE, L. X. and TJONG, S. C. Carbon nanotube/epoxy resin composite: correlation between state of nanotube dispersion and Zener tunnelling parameters. Synthetic Metals, 162(24), 2277–2281 (2012) |
[15] | HE, L. X. and TJONG, S. C. Zener tunneling in polymer nanocomposites with carbonaceous fillers. Nanocrystalline Materials, 2nd edition, Elsevier, Oxford, 377–406 (2014) |
[16] | MARIANO, L. C., SOUZA, V. H. R., KOWALSKI, E. L., ROCCO, M. L. M., ZARBIN, A. J. G., KOEHLER, M., and ROMAN, L. S. Electrical and morphological study of carbon nanotubes/polyaniline composite films: a model to explain different tunneling regimes induced by a vertical electric field. Thin Solid Films, 636, 314–324 (2017) |
[17] | ZARE, Y. and RHEE, K. Y. A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunnelling condition. Composites Part B: Engineering, 155, 11–18 (2018) |
[18] | ZARE, Y. and RHEE, K. Y. A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunnelling distance. Composites Science and Technology, 155, 252–260 (2018) |
[19] | FANG, C., ZHANG, J. J., CHEN, X., and WENG, G. J. A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon, 146, 125–138 (2019) |
[20] | HAGHGOO, M., ANSARI, R., HASSANZADEH-AGHDAM, M. K., and NANKALI, M. Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibres and wavy carbon nanotubes considering tunnelling resistivity. Composites Part A: Applied Science and Manufacturing, 126, 105616 (2019) |
[21] | ZARE, Y. and RHEE, K. Y. Expression of characteristic tunnelling distance to control the electrical conductivity of carbon nanotubes-reinforced nanocomposites. Journal of Materials Research and Technology, 9(6), 15996–16005 (2020) |
[22] | XAVIER, P. A. F., BENOY, M. D., STEPHEN, S. K., and VARGHESE, T. Enhanced electrical properties of polyaniline carbon nanotube composites: analysis of temperature dependence of electrical conductivity using variable range hopping and fluctuation induced tunnelling models. Journal of Solid State Chemistry, 300, 122232 (2021) |
[23] | CHANDA, A., SINHA, S. K., and DATLA, N. V. Electrical conductivity of random and aligned nanocomposites: theoretical models and experimental validation. Composites Part A: Applied Science and Manufacturing, 149, 106543 (2021) |
[24] | HAGHGOO, M., ANSARI, R., and HASSANZADEH-AGHDAM, M. K. Monte Carlo analytical-geometrical simulation of piezoresistivity and electrical conductivity of polymeric nanocomposites filled with hybrid carbon nanotubes/graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 152, 106716 (2022) |
[25] | WEI, S., ZHANG, Y., LV, H., DENG, L., and CHEN, G. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chemical Engineering Journal, 428, 131137 (2022) |
[26] | HAGHGOO, M., ANSARI, R., HASSANZADEH-AGHDAM, M. K., JANG, S. H., and NANKALI, M. Simulation of the role of agglomerations in the tunneling conductivity of polymer/carbon nanotube piezoresistive strain sensors. Composites Science and Technology, 243, 110242 (2023) |
[27] | ZARE, Y. and RHEE, K. Y. Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Composites Part A: Applied Science and Manufacturing, 100, 305–312 (2017) |
[28] | KIRADJIEV, K. B., HALVORSEN, S. A. A., VAN GORDER, R. A., and HOWISON, S. D. Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids. International Journal of Thermal Sciences, 145, 106009 (2019) |
[29] | CARE, S. and HERVE, E. Application of a n-phase model to the diffusion coefficient of chloride in mortar. Transport in Porous Media, 56(2), 119–135 (2004) |
[30] | LEI, X., ZHANG, X. R., SOON, A. R., GONG, S., WANG, Y., LUO, L. X., LI, T., ZHU, Z. H., and LI, Z. Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Composites Part A: Applied Science and Manufacturing, 130, 105762 (2020) |
[31] | LI, Y., XUE, B., YANG, S., CHENG, Z., XIE, L., and ZHENG, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chemical Engineering Journal, 410, 128356 (2021) |
[32] | FANG, Y., LI, L. Y., and JANG, S. H. Calculation of electrical conductivity of self-sensing carbon nanotube composites. Composites Part B: Engineering, 199, 108314 (2020) |
[33] | FANG, Y., LI, L. Y., and JANG, S. H. Piezoresistive modelling of CNTs reinforced composites under mechanical loadings. Composites Science and Technology, 208, 108757 (2021) |
[34] | FANG, Y., HU, S. W., LI, L. Y., and JANG, S. H. Percolation threshold and effective properties of CNTs-reinforced two-phase composite materials. Materials Today Communications, 29, 102977 (2021) |
[35] | LI, Z. W. and LI, L. Y. Analysis of electrical conductivity of carbon nanotube-reinforced two-phase composites. Composites Communications, 35, 101305 (2022) |
[36] | SEDLÁKOVÁ, Z., CLARIZIA, G., BERNARDO, P., JANSEN, J. C., SLOBODIAN, P., SVOBODA, P., KARASZOVA, M., FRIESS, K., and IZAK, P. I. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes, 4(1), 20–39 (2014) |
[37] | KIM, Y. J., SHIN, T. S., CHOI, H. D., KWON, J. H., CHUNG, Y. C., and YOON, H. G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon, 43(1), 23–30 (2005) |
[38] | LISUNOVA, M., MAMUNYA, Y. P., LEBOVKA, N., and MELEZHYK, A. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. European Polymer Journal, 43(3), 949–958 (2007) |
[1] | Hongbo GUAN, Dongyang SHI. P1-nonconforming triangular finite element method for elliptic and parabolic interface problems[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1197-1212. |
[2] | Guodong ZHANG, Xiaojing DONG, Yongzheng AN, Hong LIU. New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 863-872. |
[3] | 朱玮;舒适;成礼智. First-order optimality condition of basis pursuit denoise problem[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1345-1352. |
[4] | 石东洋;廖歆;唐启立. Highly efficient H1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(7): 897-912. |
[5] | 吴彦华;任慧颖. Analysis of realistic rough surface for its globally dominant parameters using continuous wavelets[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 741-748. |
[6] | 刘曰武;欧阳伟平;赵培华;鹿倩;方惠军. Numerical well test for well with finite conductivity vertical fracture in coalbed[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 729-740. |
[7] | 黄鹏展;何银年;冯新龙. Two-level stabilized finite element method for Stokes eigenvalue problem[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(5): 621-630. |
[8] | 林治家;由小川;庄茁. Goal-oriented error estimation applied to direct solution of steady-state analysis with frequency-domain finite element method[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(5): 539-552. |
[9] | 苏静波;邵国建;褚卫江. 基于区间的土体参数敏感性分析方法研究[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(12): 1651-1662 . |
[10] | 刘洋;李宏;何斯日古楞. 对流扩散方程的混合时间间断时空有限元方法[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(12): 1579-1586 . |
[11] | J.柔沙尼安;M.塔利班. 多级运载火箭动态级间分离的Monte Carlo仿真[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(11): 1411-1426 . |
[12] | 石东洋;王海红;郭城. Sobolev方程各向异性矩形非协调有限元分析[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(9): 1203-1214 . |
[13] | 袁驷;邢沁妍;王旭;叶康生. 基于最佳超收敛阶EEP法的一维有限元自适应求解[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(5): 591-602 . |
[14] | 王琤;黄自萍;李立康. Two-grid partition of unity method for second order elliptic problems[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(4): 527-533 . |
[15] | 骆艳;冯民富. Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(2): 171-183 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||