Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 193-208.doi: https://doi.org/10.1007/s10483-025-3202-9
• • 上一篇
收稿日期:
2024-06-23
修回日期:
2024-10-28
出版日期:
2025-01-03
发布日期:
2025-01-06
Received:
2024-06-23
Revised:
2024-10-28
Online:
2025-01-03
Published:
2025-01-06
Contact:
M. SARFRAZ
E-mail:mahnoor@math.qau.edu.pk
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 193-208.
K. MUHAMMAD, M. SARFRAZ. Regression analysis of squeezing-induced hybrid nanofluid flow in Darcy-Forchheimer porous medium[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 193-208.
"
Au+SiO2+water | Au+water | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 3.245 50 | 3.378 44 |
0.2 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 3.256 53 | 3.389 21 |
0.3 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 3.267 53 | 3.399 95 |
0.5 | 0.1 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 5.154 18 | 5.243 46 |
0.5 | 0.2 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 4.788 35 | 4.889 26 |
0.5 | 0.3 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 4.419 01 | 4.530 01 |
0.5 | 0.6 | 0.1 | 0.05 | 0.2 | 0.05 | 0.3 | 3.264 63 | 3.397 11 |
0.5 | 0.6 | 0.2 | 0.05 | 0.2 | 0.05 | 0.3 | 3.277 06 | 3.409 25 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 3.289 46 | 3.421 35 |
0.5 | 0.6 | 0.3 | 0.01 | 0.2 | 0.05 | 0.3 | 2.866 88 | 2.530 58 |
0.5 | 0.6 | 0.3 | 0.02 | 0.2 | 0.05 | 0.3 | 2.968 45 | 2.620 28 |
0.5 | 0.6 | 0.3 | 0.03 | 0.2 | 0.05 | 0.3 | 3.072 63 | 2.712 01 |
0.5 | 0.6 | 0.3 | 0.05 | 0.1 | 0.05 | 0.3 | 3.279 71 | 3.407 87 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 3.289 46 | 3.421 35 |
0.5 | 0.6 | 0.3 | 0.05 | 0.3 | 0.05 | 0.3 | 3.299 20 | 3.434 78 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.01 | 0.3 | 2.884 36 | 3.395 72 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.02 | 0.3 | 2.885 29 | 3.397 07 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.03 | 0.3 | 2.886 22 | 3.398 42 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.1 | 3.297 10 | 3.428 80 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.2 | 3.294 00 | 3.425 78 |
0.5 | 0.6 | 0.3 | 0.05 | 0.2 | 0.05 | 0.3 | 3.289 46 | 3.421 35 |
[1] | JACKSON, J. D. A study of squeezing flow. Applied Scientific Research, 11, 148–152 (1963) |
[2] | LEIDER, P. J. and BIRD, R. B. Squeezing flow between parallel disks, I: theoretical analysis. Industrial & Engineering Chemistry Fundamentals, 13(4), 336–341 (1974) |
[3] | GUPTA, P. S. and GUPTA, A. S. Squeezing flow between parallel plates. Wear, 45(2), 177–185 (1977) |
[4] | CAMPANELLA, O. H. and PELEG, M. Squeezing flow viscometry for nonelastic semiliquid foods — theory and applications. Critical Reviews in Food Science and Nutrition, 42(3), 241–264 (2002) |
[5] | GHORI, Q. K., AHMED, M., and SIDDIQUI, A. M. Application of homotopy perturbation method to squeezing flow of a Newtonian fluid. International Journal of Nonlinear Sciences and Numerical Simulation, 8(2), 179–184 (2007) |
[6] | GORLA, R. S. R. and CHAMKHA, A. Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. Journal of Modern Physics, 15(2), 81–94 (2011) |
[7] | MUNAWAR, S., MEHMOOD, A., and ALI, A. Three-dimensional squeezing flow in a rotating channel of lower stretching porous wall. Computers & Mathematics with Applications, 64(6), 1575–1586 (2012) |
[8] | KHAN, U., AHMED, N., and MOHYUD-DIN, S. T. Numerical investigation for three-dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes. Applied Thermal Engineering, 113, 1107–1117 (2017) |
[9] | KRISHNA, M. V. and CHAMKHA, A. J. Hall effects on MHD squeezing flow of a water-based nanofluid between two parallel disks. Journal of Porous Media, 22(2), 209–223 (2019) |
[10] | DOGONCHI, A. S., WAQAS, M., AFSHAR, S. R., SEYYEDI, S. M., HASHEMI-TILEHNOEE, M., CHAMKHA, A. J., and GANJI, D. D. Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles. International Journal of Numerical Methods for Heat & Fluid Flow, 30(2), 659–680 (2020) |
[11] | MUHAMMAD, K., HAYAT, T., MOMANI, S., and ASGHAR, S. FDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (CC) heat flux and convective boundary condition. Alexandria Engineering Journal, 61(6), 4719–4727 (2022) |
[12] | MUHAMMAD, K., ALHARBI, K. A. M., FATIMA, N., and ALHOWAITY, A. Squeezed flow of MHNF (modified hybrid nanofluid) with thermal radiation and CC (Cattaneo-Christov) heat flux: a numerical study via FDM. Materials Science and Engineering: B, 289, 116268 (2023) |
[13] | SULTANA, N., SHAW, S., NAYAK, M. K., and MONDAL, S. Hydromagnetic slip flow and heat transfer treatment of Maxwell fluid with hybrid nanostructure: low Prandtl numbers. International Journal of Ambient Energy, 44(1), 947–957 (2023) |
[14] | CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Developments and Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66, 99–105 (1995) |
[15] | MAXWELL, J. C. On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157, 49–88 (1867) |
[16] | BRINKMAN, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4), 571–571 (1952) |
[17] | XUAN, Y. and LI, Q. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64 (2000) |
[18] | CHAMKHA, A. J. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numerical Heat Transfer, Part A Applications, 32(6), 653–675 (1997) |
[19] | GU, S. Y., GAO, X. F., and ZHANG, Y. H. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids. Materials Chemistry and Physics, 149, 587–593 (2015) |
[20] | SHEIKHOLESLAMI, M. Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Solar Energy Materials and Solar Cells, 243, 111786 (2022) |
[21] | DUBEY, V. and SHARMA, A. K. A short review on hybrid nanofluids in machining processes. Advances in Materials and Processing Technologies, 9(1), 138–151 (2023) |
[22] | PARVIN, S., NASRIN, R., ALIM, M. A., HOSSAIN, N. F., and CHAMKHA, A. J. Thermal conductivity variation on natural convection flow of water-alumina nanofluid in an annulus. International Journal of Heat and Mass Transfer, 55(19-20), 5268–5274 (2012) |
[23] | KUMBHAKAR, B., NANDI, S., and CHAMKHA, A. J. Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: a multiple regression analysis. Chinese Journal of Physics, 79, 38–56 (2022) |
[24] | JAMEI, M., KARBASI, M., MOSHARAF-DEHKORDI, M., OLUMEGBON, I. A., ABUALIGAH, L., SAID, Z., and ASADI, A. Estimating the density of hybrid nanofluids for thermal energy application: application of non-parametric and evolutionary polynomial regression data-intelligent techniques. Measurement, 189, 110524 (2022) |
[25] | RAJU, C. S. K., AHAMMAD, N. A., SAJJAN, K., SHAH, N. A., YOOK, S. J., and KUMAR, M. D. Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy walls with different shapes and densities: simple linear regression. International Communications in Heat and Mass Transfer, 135, 106110 (2022) |
[26] | NAYAK, M. K., MAHANTA, G., DAS, M., and SHAW, S. Entropy analysis of a 3D nonlinear radiative hybrid nanofluid flow between two parallel stretching permeable sheets with slip velocities. International Journal of Ambient Energy, 43(1), 8710–8721 (2022) |
[27] | SARFRAZ, M. and KHAN, M. Impact of Reynolds number in modulating wall stresses in radial stagnation-point flow. Physica Scripta, 98(8), 085245 (2023) |
[28] | MOHANTY, D., MAHANTA, G., SHAW, S., and SIBANDA, P. Thermal and irreversibility analysis on Cattaneo-Christov heat flux-based unsteady hybrid nanofluid flow over a spinning sphere with interfacial nanolayer mechanism. Journal of Thermal Analysis and Calorimetry, 148(21), 12269–12284 (2023) |
[29] | REVATHI, G., AVADAPU, S., RAJU, C. S. K., BABU, M. J., ZIDAN, A. M., ALAOUI, M. K., SHAH, N. A., and CHUNG, J. D. Dynamics of Lorentz force and cross-diffusion effects on ethylene glycol-based hybrid nanofluid flow amidst two parallel plates with variable electrical conductivity: a multiple linear regression analysis. Case Studies in Thermal Engineering, 41, 102603 (2023) |
[30] | SARFRAZ, M., KHAN, M., AL-ZUBAIDI, A., and SALEEM, S. Enhancing energy transport in Homann stagnation-point flow over a spiraling disk with ternary hybrid nanofluids. Case Studies in Thermal Engineering, 49, 103134 (2023) |
[31] | SULTANA, N., SHAW, S., MONDAL, S., NAYAK, M. K., NAZARI, S., MOULDI, A., and CHAMKHA, A. J. Hall and ion-slip current efficacy on thermal performance of magnetic power-law hybrid nanofluid using modified Fourier's law. Ain Shams Engineering Journal, 15(8), 102838 (2024) |
[32] | ABRISHAMI, A., BAHRAMI, A. R., NEKOOEI, S., SALJOOGHI, A. S., and MATIN, M. M. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics. Communications Biology, 7(1), 393 (2024) |
[33] | Al-THANI, A. N., JAN, A. G., ABBAS, M., GEETHA, M., and SADASIVUNI, K. K. Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sciences, 352, 122899 (2024) |
[1] | M. A. MERAJ, S. A. SHEHZAD, T. HAYAT, F. M. ABBASI, A. ALSAEDI. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 557-566. |
[2] | S. MAITI, S. K. PANDEY. Rheological fluid motion in tube by metachronal waves of cilia[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 393-410. |
[3] | Yadong HUANG, Benmou ZHOU, Zhaolie TANG. Instability of cylinder wake under open-loop active control[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 439-452. |
[4] | T. HAYAT, M. MUMTAZ, A. SHAFIQ, A. ALSAEDI. Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 271-288. |
[5] | M. A. Z. RAJA, R. SAMAR, T. HAROON, S. M. SHAH. Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1611-1638. |
[6] | Shihui FU, Xiangying MENG, Qishao LU. Stability and boundary equilibrium bifurcations of modified Chua's circuit with smooth degree of 3[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1639-1650. |
[7] | T. HAYAT, M. IMTIAZ, A. ALSAEDI. Partial slip effects in flow over nonlinear stretching surface[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1513-1526. |
[8] | U. GÜVEN. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(10): 1305-1318. |
[9] | A. M. MEGAHED. Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(10): 1273-1284. |
[10] | M. FAROOQ, A. ALSAEDI, T. HAYAT. Note on characteristics of homogeneous-heterogeneous reaction in flow of Jeffrey fluid[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(10): 1319-1328. |
[11] | A. RAEES;Hang XU;Qiang SUN;I. POP. Mixed convection in gravity-driven nano-liquid film containing both nanoparticles and gyrotactic microorganisms[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 163-178. |
[12] | M. KHAN;R. MALIK;A. ANJUM. Exact solutions of MHD second Stokes flow of generalized Burgers fluid[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 211-224. |
[13] | S. ASGHAR;Q. HUSSAIN;T. HAYAT;F. ALSAADI. Hall and ion slip effects on peristaltic flow and heat transfer analysis with Ohmic heating[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(12): 1509-1524. |
[14] | S. PANIGRAHI;M. REZA;A. K. MISHRA. MHD effect of mixed convection boundary-layer flow of Powell-Eyring fluid past nonlinear stretching surface[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(12): 1525-1540. |
[15] | T. HAYAT;S. ABELMAN;M. HAMESE. Oscillatory Couette flow of rotating Sisko fluid[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1301-1310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||