Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 391-402.doi: https://doi.org/10.1007/s10483-025-3213-8
• • 上一篇
收稿日期:
2024-08-25
修回日期:
2024-12-06
出版日期:
2025-02-03
发布日期:
2025-02-02
S. U. KHAN1, M. GARAYEV2, ADNAN3, K. RAMESH4,5,6, M. EL MELIGY7,8, D. ABDUVALIEVA9, M. I. KHAN10,†()
Received:
2024-08-25
Revised:
2024-12-06
Online:
2025-02-03
Published:
2025-02-02
Contact:
M. I. KHAN
E-mail:2106391391@pku.edu.cn
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 391-402.
S. U. KHAN, M. GARAYEV, ADNAN, K. RAMESH, M. EL MELIGY, D. ABDUVALIEVA, M. I. KHAN. Applications of variable thermal features for the bioconvective flow of Jeffrey nanofluids due to stretching surface with masssuction effects: Cattaneo-Christov model[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 391-402.
"
Nusselt number | Sherwood number | Motile density number | |||||
---|---|---|---|---|---|---|---|
0.2 | 0.1 | 0.3 | 0.3 | 0.5 | 0.827 41 | 0.662 44 | 0.556 43 |
0.4 | 0.1 | 0.3 | 0.3 | 0.5 | 0.776 23 | 0.650 64 | 0.533 13 |
0.6 | 0.1 | 0.3 | 0.3 | 0.5 | 0.728 54 | 0.632 33 | 0.526 45 |
0.6 | 0.4 | 0.3 | 0.3 | 0.5 | 0.789 51 | 0.625 43 | 0.590 53 |
0.6 | 0.8 | 0.3 | 0.3 | 0.5 | 0.777 53 | 0.575 36 | 0.574 67 |
0.6 | 1.4 | 0.3 | 0.3 | 0.5 | 0.752 68 | 0.530 54 | 0.567 85 |
0.6 | 1.4 | 0.2 | 0.3 | 0.5 | 0.838 90 | 0.645 34 | 0.544 50 |
0.6 | 1.4 | 0.6 | 0.3 | 0.5 | 0.810 15 | 0.626 75 | 0.523 38 |
0.6 | 1.4 | 1.0 | 0.3 | 0.5 | 0.789 37 | 0.597 51 | 0.487 42 |
0.6 | 1.4 | 1.0 | 0.2 | 0.5 | 0.885 32 | 0.572 33 | 0.569 85 |
0.6 | 1.4 | 1.0 | 0.4 | 0.5 | 0.935 32 | 0.588 87 | 0.597 69 |
0.6 | 1.4 | 1.0 | 0.6 | 0.5 | 0.993 34 | 0.616 87 | 0.619 51 |
0.6 | 1.4 | 1.0 | 0.6 | 0.4 | 0.809 73 | 0.694 47 | 0.607 53 |
0.6 | 1.4 | 1.0 | 0.6 | 1.0 | 0.775 32 | 0.716 87 | 0.622 48 |
0.6 | 1.4 | 1.0 | 0.6 | 1.6 | 0.740 37 | 0.737 41 | 0.653 21 |
[1] | WANG, B. F., ZHOU, Q., and SUN, C., Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Science Advances, 6(21), eaaz8239 (2020) |
[2] | WU, J. Z., WANG, B. F., and ZHOU, Q. Massive heat transfer enhancement of Rayleigh-Bénard turbulence over rough surfaces and under horizontal vibration. Acta Mechanica Sinica, 38(2), 321319 (2022) |
[3] | HUANG, Z. L., WU, J. Z., GUO, X. L., ZHAO, C. B., WANG, B. F., CHONG, K. L., and ZHOU, Q. Unifying constitutive law of vibroconvective turbulence in microgravity. Journal of Fluid Mechanics, 987, A14 (2024) |
[4] | WU, J. Z., WANG, B. F., CHONG, K. L., DONG, Y. H., SUN, C., and ZHOU, Q. Vibration-induced ‘anti-gravity’ tames thermal turbulence at high Rayleigh numbers. Journal of Fluid Mechanics, 951, A13 (2022) |
[5] | HSIAO, K. L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Applied Thermal Engineering, 112, 1281–1288 (2017) |
[6] | HSIAO, K. L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy, 130, 486–499 (2017) |
[7] | HSIAO, K. L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850–861 (2016) |
[8] | HSIAO, K. L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. International Journal of Heat and Mass Transfer, 112, 983–990 (2017) |
[9] | NAZIR, W., JAVED, T., ALI, N., and MUBBASHAR, N. Effects of radiative heat flux and heat generation on magnetohydodynamics natural convection flow of nanofluid inside a porous triangular cavity with thermal boundary conditions. Numerical Methods for Partial Differential Equations, 40(2), e22768 (2024) |
[10] | BILAL, S., PAN, K., HUSSAIN, Z., KADA, B., PASHA, A. A., and KHAN, W. A. Darcy-Forchheimer chemically reactive bidirectional flow of nanofluid with magneto-bioconvection and Cattaneo-Christov properties. Tribology International, 193, 109313 (2024) |
[11] | RAHMAN, M., TURKYILMAZOGLU, M., and MUSHTAQ, Z. Effects of multiple shapes for steady flow with transformer oil+Fe3O4+TiO2 between two stretchable rotating disks. Applied Mathematics and Mechanics (English Edition), 45(2), 373–388 (2024) https://doi.org/10.1007/s10483-024-3088-7 |
[12] | ZAHEER, M., ABBAS, S. Z., HUANG, N., and ELMASRY, Y. Analysis of buoyancy features on magneto hydrodynamic stagnation point flow of nanofluid using homotopy analysis method. International Journal of Heat and Mass Transfer, 221, 125045 (2024) |
[13] | ISLAM, A., MAHMOOD, Z., and KHAN, U. Significance of mixed convective double diffusive MHD stagnation point flow of nanofluid over a vertical surface with heat generation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems (2024) https://doi.org/10.1177/23977914231210798 |
[14] | HAIDER, J. A., GUL, S., GEPREEL, K. A., KHAN, M. N., and LONE, S. A., Impact of heat transfer on peristaltic flow of nanofluid and its applications in real world problems. Modern Physics Letters B, 38(6), 2350244 (2024) |
[15] | RAMASEKHAR, G. and JAWAD, M. Characteristics of MWCNT, SWCNT, Cu and water based on magnetized flow of nanofluid with Soret and Dufour effects induced by moving wedge: consequence of Falkner-Skan power law. Numerical Heat Transfer, Part A: Applications (2024) https://doi.org/10.1080/10407782.2024.2341270 |
[16] | AL ARNI, S., EL JERY, A., ULLAH, Z., ALSULAMI, M. D., EL ZAHAR, E. R., SEDDEK, L. F., and BEN KHEDHER, N. Oscillatory and non-oscillatory analysis of heat and mass transfer of Darcian MHD flow of nanofluid along inclined radiating plate with Joule heating and multiple slip effects: microgravity analysis. Case Studies in Thermal Engineering, 60, 104681 (2024) |
[17] | ELBOUGHDIRI, N., JAVID, K., SHEHZAD, M. Q., and BENGUERBA, Y. Influence of chemical reaction on electro-osmotic flow of nanofluid through convergent multi-sinusoidal passages. Case Studies in Thermal Engineering, 54, 103955 (2024) |
[18] | LI, S., FAIZAN, M., ALI, F., RAMASEKHAR, G., MUHAMMAD, T., KHALIFA, H. A. E., and AHMAD, Z. Modelling and analysis of heat transfer in MHD stagnation point flow of Maxwell nanofluid over a porous rotating disk. Alexandria Engineering Journal, 91, 237–248 (2024) |
[19] | SAHOO, R. K., MISHRA, S. R., and PANDA, S. Effective properties of binary chemical reaction with Brownian and thermophoresis on the radiative flow of nanofluid within an inclined heated channel. Colloid and Polymer Science, 302, 1337–1352 (2024) |
[20] | MISHRA, S. K., TRIPURE, A., MISHRA, A., and SINGH, P. Effects of vibrational flow on nanofluid flow behavior under different temperature boundary conditions. Numerical Heat Transfer, Part A: Applications (2024) https://doi.org/10.1080/10407782.2024.2340071 |
[21] | REZAEE, D. Linear temporal stability of Jeffery-Hamel flow of nanofluids. European Journal of Mechanics-B/Fluids, 107, 1–16 (2024) |
[22] | MAHITHA, O., GOLLA, V. K. A., AKGÜL, A., and BANGALORE, R. K. New YAC time-fractional derivative approach for water-based hydromagnetic chemically reacting radiative flow of nanofluid with copper nanoparticles past an upright plate. Numerical Heat Transfer, Part B: Fundamentals (2024) https://doi.org/10.1080/10407790.2024.2345703 |
[23] | WAQAS, H., HUSSAIN, M., ALQARNI, M. S., EID, M. R., and MUHAMMAD, T. Numerical simulation for magnetic dipole in bioconvection flow of Jeffrey nanofluid with swimming motile microorganisms. Waves in Random and Complex Media, 34(3), 1958–1975 (2024) |
[24] | PUNEETH, V., ALI, F., KHAN, M. R., ANWAR, M. S., and AHAMMAD, N. A. Theoretical analysis of the thermal characteristics of Ree-Eyring nanofluid flowing past a stretching sheet due to bioconvection. Biomass Conversion and Biorefinery, 14(7), 8649–8660 (2024) |
[25] | IQBAL, M., KHAN, N. S., KHAN, W., HASSINE, S. H., ALHABEEB, S. A., and KHALIFA, H. A. E. Partially ionized bioconvection Eyring-Powell nanofluid flow with gyrotactic microorganisms in thermal system. Thermal Science and Engineering Progress, 47, 102283 (2024) |
[26] | SHAMSHUDDIN, M. D., SAEED, A., MISHRA, S. R., KATTA, R., and EID, M. R. Homotopic simulation of MHD bioconvective flow of water-based hybrid nanofluid over a thermal convective exponential stretching surface. International Journal of Numerical Methods for Heat & Fluid Flow, 34(1), 31–53 (2024) |
[27] | YU, L. P., LI, Y. J., PUNEETH, V., SINGH, C., SINGHAL, A., and ANWAR, M. S. Thermal optimisation through the stratified bioconvective jetflow of nanofluid. Numerical Heat Transfer, Part B: Fundamentals, 85(6), 791–804 (2024) |
[28] | ABBAS, M., KHAN, N., and SHEHZAD, S. A. Numerical analysis of Marangoni convected dusty second-grade nanofluid flow in a suspension of chemically reactive microorganisms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(10), 4400–4417 (2024) |
[29] | GASMI, H., OBALALU, A. M., AKINDELE, A. O., SALAUDEEN, S. A., KHAN, U., ISHAK, A., ABBAS, A., MUHAMMAD, T., HUSSAIN, S. M., and ABED, A. M. Thermal performance of a motile-microorganism within the two-phase nanofluid flow for the distinct non-Newtonian models on static and moving surfaces. Case Studies in Thermal Engineering, 58, 104392 (2024) |
[30] | JAWAD, M., HUSSAIN, S., OUDINA, F. M., and SHEHZAD, K. Insinuation of radiative bio-convective MHD flow of Casson nanofluid with activation energy and swimming microorganisms. Mathematical Modelling of Fluid Dynamics and Nanofluids, 343-362 (2024) |
[31] | HUSSAIN, S. M., MAJEED, A., IJAZ, N., OMER, A. S. A., KHAN, I., MEDANI, M., and KHEDHER, N. B. Heat transfer in three dimensional micropolar based nanofluid with electromagnetic waves in the presence of eukaryotic microbes. Alexandria Engineering Journal, 94, 339–353 (2024) |
[32] | RASHED, A. S., EHSAN, H. N., and MABROUK, S. M. Influence of gyrotactic microorganisms on bioconvection in electromagnetohydrodynamic hybrid nanofluid through a permeable sheet. Computation, 12(1), 17 (2024) |
[33] | KHAN, M. I., AL KHALED, K., KHAN, S. U., IMTIAZ, M., and NORBERDIYEVA, M. Combined effects of nonlinear thermal radiation and suction/injection on bioconvective boundary layer of Maxwell nanofluid over a porous movable surface. Numerical Heat Transfer, Part A: Applications (2024) https://doi.org/10.1080/10407782.2024.2372039 |
[34] | TURKYILMAZOGLU, M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. International Journal of Mechanical Sciences, 77, 263–268 (2013) |
[1] | Chenggong LI, J. P. Y. MAA. Multi-relaxation-time lattice Boltzmann simulations of lid driven flows using graphics processing unit[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(5): 707-722. |
[2] | Xinhui SI, Haozhe LI, Yanan SHEN, Liancun ZHENG. Effects of nonlinear velocity slip and temperature jump on pseudo-plastic power-law fluid over moving permeable surface in presence of magnetic field[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 333-342. |
[3] | Renjie JIANG, Pengjun ZHENG. Resonance in flow past oscillating cylinder under subcritical conditions[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 363-378. |
[4] | S. MAITI, S. K. PANDEY. Rheological fluid motion in tube by metachronal waves of cilia[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 393-410. |
[5] | Chenyue XIE, Jianjun TAO, Ji LI. Viscous Rayleigh-Taylor instability with and without diffusion effect[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 263-270. |
[6] | Yunlong LI, Wei CAO. Research of influence of reduced-order boundary on accuracy and solution of interior points[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 111-124. |
[7] | Haiyan SONG, Lifu LIANG. Investigation of power-type variational principles in liquid-filled system[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1651-1662. |
[8] | T. HAYAT, M. IMTIAZ, A. ALSAEDI. Partial slip effects in flow over nonlinear stretching surface[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1513-1526. |
[9] | Wentang WU, Yanji HONG, Baochun FAN. Numerical investigation of turbulent channel flow controlled by spatially oscillating spanwise Lorentz force[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1113-1120. |
[10] | Haiping TIAN, Nan JIANG, Yongxiang HUANG, Shaoqiong YANG. Study on local topology model of low/high streak structures in wall-bounded turbulence by tomographic time-resolved particle image velocimetry[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1121-1130. |
[11] | Benwen LI, Shangshang CHEN. Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1073-1090. |
[12] | Yang SONG, Chunxiao XU, Weixi HUANG, Guixiang CUI. Optimal transient growth in turbulent pipe flow[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1057-1072. |
[13] | Yongming ZHANG, Caihong SU. Self-consistent parabolized stability equation (PSE) method for compressible boundary layer[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 835-846. |
[14] | Mingwei GE, Yingtao ZUO, Ying DENG, Yuhua LI. Spatial relation between fluctuating wall pressure and near-wall streamwise vortices in wall bounded turbulent flow[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(6): 719-728. |
[15] | Jinglei XU;Zhengguang TU;Ning HU. Rotation invariant constitutive relation for Reynolds stress structure parameter[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(4): 517-522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||