Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (4): 723-744.doi: https://doi.org/10.1007/s10483-025-3242-9
收稿日期:
2024-11-17
修回日期:
2025-02-20
发布日期:
2025-04-07
Hongping GUO1,2, Xun WANG3,4, Zhijun SHEN1,5,†()
Received:
2024-11-17
Revised:
2025-02-20
Published:
2025-04-07
Contact:
Zhijun SHEN
E-mail:shen_zhijun@iapcm.ac.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(4): 723-744.
Hongping GUO, Xun WANG, Zhijun SHEN. A low Mach number asymptotic analysis of dissipation-reducing methods for curing shock instability[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(4): 723-744.
[1] | ROE, P. L. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372 (1981) |
[2] | TORO, E. F., SPRUCE, M., and SPEARES, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25–34 (1994) |
[3] | GODUNOV, S. K. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Matematicheskii Sbornik, 47, 357–393 (1959) |
[4] | QUIRK, J. J. A contribution to the great Riemann solver debate. International Journal for Numerical Methods in Fluids, 18(6), 555–574 (1994) |
[5] | LIOU, M. S. Mass flux schemes and connection to shock instability. Journal of Computational Physics, 160, 623–648 (2000) |
[6] | XU, K. and LI, Z. W. Dissipative mechanism in Godunov-type schemes. International Journal for Numerical Methods in Fluids, 37, 1–22 (2001) |
[7] | HARTEN, A., LAX, P. D., and LEER, B. V. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, Springer Berlin Heidelberg, Berlin, 53–79 (1997) |
[8] | SIMON, S. and MANDAL, J. C. A simple cure for numerical shock instability in the HLLC Riemann solver. Journal of Computational Physics, 378, 477–496 (2019) |
[9] | PANDOLFI, M. and D’AMBROSIO, D. Numerical instabilities in upwind methods: analysis and cures for the carbuncle phenomenon. Journal of Computational Physics, 166, 271–301 (2001) |
[10] | SANDERS, R., MORANO, E., and DRUGUET, M. C. Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics. Journal of Computational Physics, 145, 511–537 (1998) |
[11] | SHEN, Z. J., YAN, W., and YUAN, G. W. A robust HLLC-type Riemann solver for strong shock. Journal of Computational Physics, 309, 185–206 (2016) |
[12] | HU, L. J., YUAN, H. Z., and ZHAO, K. L. A shock-stable HLLEM scheme with improved contact resolving capability for compressible Euler flows. Journal of Computational Physics, 453, 110947 (2022) |
[13] | LIU, L. Q., LI, X., and SHEN, Z. J. Overcoming shock instability of the HLLE-type Riemann solvers. Journal of Computational Physics, 418, 109628 (2020) |
[14] | KEMM, F. Heuristical and numerical considerations for the carbuncle phenomenon. Applied Mathematics and Computation, 320, 596–613 (2018) |
[15] | CHEN, Z. Q., HUANG, X. D., REN, Y. X., XIE, Z. F., and ZHOU, M. Mechanism study of shock instability in Riemann-solver-based shock-capturing scheme. AIAA Journal, 56(9), 3636–3651 (2018) |
[16] | CHEN, Z. Q., HUANG, X. D., REN, Y. X., XIE, Z. F., and ZHOU, M. Mechanism-derived shock instability elimination for Riemann-solver-based shock-capturing scheme. AIAA Journal, 56(9), 3652–3666 (2018) |
[17] | XIE, W. J., TIAN, Z. Y., ZHANG, Y., HANG, Y., and REN, W. J. Further studies on numerical instabilities of Godunov-type schemes for strong shocks. Computers & Mathematics with Applications, 102, 65–86 (2021) |
[18] | FLEISCHMANN, N., ADAMI, S., HU, X. Y., and ADAMS, N. A. A low dissipation method to cure the grid-aligned shock instability. Journal of Computational Physics, 401, 109004 (2020) |
[19] | FLEISCHMANN, N., ADAMI, S., and ADAMS, N. A. A shock-stable modification of the HLLC Riemann solver with reduced numerical dissipation. Journal of Computational Physics, 423, 109762 (2020) |
[20] | GUILLARD, H. and VIOZAT, C. On the behaviour of upwind schemes in the low Mach number limit. Computers & Fluids, 28, 63–86 (1999) |
[21] | GUILLARD, H. and MURRONE, A. On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Computers & Fluids, 33, 655–675 (2004) |
[22] | GUILLARD, H. and NKONGA, B. On the behaviour of upwind schemes in the low Mach number limit: a review. Handbook of Numerical Analysis, 18, 203–231 (2017) |
[23] | DUMBSER, M., MORSCHETTA, J. M., and GRESSIER, J. A matrix stability analysis of the carbuncle phenomenon. Journal of Computational Physics, 197, 647–670 (2004) |
[24] | EINFELDT, B., MUNZ, C. D., ROE, P. L., and SJOGREEN, B. On Godunov-type methods near low density. Journal of Computational Physics, 92, 273–295 (1991) |
[25] | RIEPER, F. On the Behaviour of Numerical Schemes in the Low Mach Number Regime, Ph.D. dissertation, Brandenburg Technical University, Cottbus (2008) |
[26] | KLEIN, R. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics, I, one-dimensional flow. Journal of Computational Physics, 121, 213–217 (1995) |
[27] | LANDAU, L. D. and LIFSHITZ, E. M. Fluid Mechanics, 2nd. ed., Pergamon Press, Oxford (1987) |
[28] | LUBCHICH, A. A. and PUDOVKIN, M. I. Interaction of small perturbations with shock waves. Physics of Fluids, 16, 4489–4505 (2004) |
[29] | MCKENZIE, J. F. and WESTPHAL, K. O. Interaction of linear waves with oblique shock waves. Physics of Fluids, 11, 2350–2362 (1968) |
[30] | SHEN, Z. J., YAN, W., and YUAN, G. W. A stability analysis of hybrid schemes to cure shock instability. Communications in Computational Physics, 15, 1320–1342 (2014) |
[1] | Chao ZHANG, Zhenhua WAN, Dejun SUN. Model reduction for supersonic cavity flow using proper orthogonal decomposition (POD) and Galerkin projection[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(5): 723-736. |
[2] | Yunlong LI, Wei CAO. Research of influence of reduced-order boundary on accuracy and solution of interior points[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 111-124. |
[3] | I. M. ELDESOKY, S. I. ABDELSALAM, R. M. ABUMANDOUR, M. H. KAMEL, K. VAFAI. Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 137-154. |
[4] | Da-ming LI;Xiao-yu LI;Yan-qing LI;R. J. FARAHANI. Flow pattern analysis of linear gradient flow distribution[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(1): 81-106. |
[5] | Chang-yue XU;Tao ZHOU;Cong-lei WANG;Jian-hong SUN. Applications of scale-adaptive simulation technique based on one-equation turbulence model[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(1): 121-130. |
[6] | H. YASMIN;T. HAYAT;A. ALSAEDI;H. H. ALSULAMI. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary condition[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 697-716. |
[7] | 高军;罗纪生. Mode decomposition of nonlinear eigenvalue problems and application in flow stability[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 667-674. |
[8] | 禹旻 罗纪生. Nonlinear evolution of Klebanoff type second mode disturbances in supersonic flat-plate boundary layer[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(3): 359-368. |
[9] | 毛旭 曹伟. Prediction of hypersonic boundary layer transition on sharp wedge flow considering variable specific heat[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(2): 143-154. |
[10] | 银波;徐典;安亦然;陈耀松. 基于iSIGHT平台的三维机翼气动优化设计[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(5): 603-610 . |
[11] | 李博;胡国辉;周哲玮. Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1415-1426 . |
[12] | . ADAPTIVE DELAUNAY TRIANGULATION WITH MULTIDIMENSIONAL DISSIPATION SCHEME FOR HIGH-SPEED COMPRESSIBLE FLOW ANALYSIS[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(10): 1341-1356 . |
[13] | 沈远胜;刘高联;刘永杰. QUASI-VARIATIONAL PRINCIPLE FOR THE VORTEX-POTENTIAL FUNCTION OF ROTATIONAL FLOW IN THREE-DIMENSION PIPE[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(1): 10-15. |
[14] | 冯文杰;邹振祝. VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(6): 700-705. |
[15] | 张韧;沙文钰;蒋国荣;王继光. SOLITON-LIKE THERMAL SOURCE FORCING AND SINGULAR RESPONSE OF ATMOSPHERE AND OCEANS TO IT[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(6): 714-719. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||