Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (7): 1365-1382.doi: https://doi.org/10.1007/s10483-025-3275-6
收稿日期:
2025-01-13
修回日期:
2025-05-28
发布日期:
2025-06-30
Received:
2025-01-13
Revised:
2025-05-28
Published:
2025-06-30
Contact:
N. KHAJI
E-mail:nkhaji@hiroshima-u.ac.jp
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1365-1382.
S. FORGHANI, N. KHAJI. Anisotropic concurrent coupled atomistic and discrete dislocation for partial dislocations in FCC materials[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1365-1382.
"
Number | Step | MD | DDD | Linear elasticity | ||
---|---|---|---|---|---|---|
1 | Predict in MD and update segments in DDD | Predict | Update segments | |||
Input | ||||||
Output | ||||||
2 | Detect atomic dislocations in MD | Detect atomic dislocations | ||||
Input | ||||||
Output | ||||||
3 | Compute | Compute | ||||
Input | ||||||
Output | ||||||
4 | Compute boundary corrections | Compute boundary corrections | ||||
Input | ||||||
Output | ||||||
5 | Solve elasticity by linear elasticity | Solve elasticity | ||||
Input | ||||||
Output | ||||||
6 | Compute forces by MD and DDD | Compute forces | Compute forces | |||
Input | ||||||
Output | ||||||
7 | Correct by MD | Correct | ||||
Input | ||||||
Output |
[1] | STEINHAUSER, M. and HIERMAIER, S. A review of computational methods in materials science: examples from shock-wave and polymer physics. International Journal of Molecular Science, 10, 5135–5216 (2009) |
[2] | TADMOR, E. B. and MILLER, R. E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, New York (2011) |
[3] | WEINBERGER, C. R. and TUCKER, G. H. Multi-scale Materials Modeling for Nanomechanics, Springer, Switzerland (2016) |
[4] | CURTIN, W. A. and MILLER, R. E. Atomistic/continuum coupling in computational materials science. Modelling and Simulation in Materials Science and Engineering, 11, 33–68 (2003) |
[5] | ZBIB, H. M. and RUBIA, T. D. A multi-scale model of plasticity. International Journal of Plasticity, 18, 1133–1163 (2002) |
[6] | XIA, W., LI, W. K., RAO, J. R., JIANG, Z. Q., JU, J. W. W., and CUI, S. A. The multi-scale damage evolution of nano-modified concrete under the cold region tunnel environment based on micromechanical model. Composite Structures, 351, 118612 (2025) |
[7] | NGUYEN, K., ZHANG, M., AMORES, V. J., SANZ, M. A., and MONTÁNS, F. J. Computational modeling of dislocation slip mechanisms in crystal plasticity: a short review. Crystals, 11, 42 (2021) |
[8] | FU, P., ZHAO, J., ZHANG, X., MIAO, H., WEN, Z., KANG, G., and KAN, Q. Three-dimensional tractive rolling contact analysis of functionally graded coating-substrate systems with interfacial imperfection and frictional anisotropy. Composite Structures, 307, 116671 (2023) |
[9] | TUMMALA, H. 3D Discrete Dislocation Dynamics Simulations of the Role of Interfaces in Confined Materials: Application to Electronic Devices Such as LEDs, Ph. D. dissertation, Université Grenoble Alpes (2016) |
[10] | LYU, D. and LI, S. A multiscale dislocation pattern dynamics: towards an atomistic-informed crystal plasticity theory. Journal of the Mechanics and Physics of Solids, 122, 613–632 (2019) |
[11] | YUAN, J., HUANG, Y., CHEN, W., PAN, E., and KANG, G. Theory of dislocation loops in multilayered anisotropic solids with magneto-electro-elastic couplings. Journal of the Mechanics and Physics of Solids, 125, 440–471 (2019) |
[12] | XU, J. H., ZHANG, Y., ZHANG, Y. Y., SONG, W., XU, H., and ZHAO, Y. S. Meso-FE modelling for homogenization of the nonlinear orthotropic behavior of PTFE-coated fabric based on virtual fiber method. Composite Structures, 338, 118093 (2024) |
[13] | PRASTITI, N. G., XU, Y., BALINT, D. S., and DUNNE, F. P. E. Discrete dislocation, crystal plasticity and experimental studies of fatigue crack nucleation in single-crystal nickel. International Journal of Plasticity, 126, 102615 (2020) |
[14] | GUO, H., GAO, P., and WANG, X. Integrated multi-scale approach combining global homogenization and local refinement for multifield analysis of high-temperature superconducting composite magnets. Applied Mathematics and Mechanics (English Edition), 45(5), 747–762 (2024) https://doi.org/10.1007/s10483-024-3112-8 |
[15] | AGARWAL, G. and DONGARE, A. M. Defect and damage evolution during spallation of single crystal Al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Computational Materials Science, 145, 68–79 (2018) |
[16] | ANSARI, R., ROUHI, S., and ARYAYI, M. Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum. Applied Mathematics and Mechanics (English Edition), 34(10), 1187–1200 (2013) https://doi.org/10.1007/s10483-013-1738-6 |
[17] | YANG, C., PACHAURY, Y., EL-AZAB, A., and WHARRY, J. Molecular dynamics simulation of vacancy and void effects on strain-induced martensitic transformations in Fe-50 at.% Ni model concentrated solid solution alloy. Scripta Materialia, 209, 114394 (2022) |
[18] | ZHU, Y., HU, J., HUANG, S., WANG, J., LUO, G., and SHEN, Q. Molecular dynamics simulation on spallation of [1 1 1] Cu/Ni nano-multilayers: voids evolution under different shock pulse duration. Computational Materials Science, 202, 110923 (2022) |
[19] | WU, B., ZHOU, S., and LI, Z. Analytical solution for the stress field of hierarchical defects: multiscale framework and applications. Applied Mathematics and Mechanics (English Edition), 42(2), 183–208 (2021) https://doi.org/10.1007/s10483-021-2673-9 |
[20] | SILANI, M., TALEBI, H., ZIAEI-RAD, S., KERFRIDEN, P., BORDAS, S. P., and RABCZUK, T. Stochastic modelling of clay/epoxy nanocomposites. Composite Structures, 118, 241–249 (2014) |
[21] | KRASNIKOV, V. S., KUKSIN, A. Y., MAYER, A. E., and YANILKIN, A. V. Plastic deformation under high-rate loading: the multiscale approach. Physics of the Solid State, 52, 1386–1396 (2010) |
[22] | YANILKIN, A. V., KRASNIKOV, V. S., KUKSIN, A. Y., and MAYER, A. E. Dynamics and kinetics of dislocations in Al and Al-Cu alloy under dynamic loading. International Journal of Plasticity, 55, 94–107 (2014) |
[23] | HAN, F., ROTERS, F., and RAABE, D. Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver. International Journal of Plasticity, 125, 97–117 (2020) |
[24] | CHENG, J., HU, X., SUN, X., VIVEK, A., DAEHN, G., and CULLEN, D. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys. Journal of Materials Science and Technology, 59, 149–163 (2020) |
[25] | HUANG, M., HUANG, S., LIANG, S., ZHU, Y., and LI, Z. An efficient 2D discrete dislocation dynamics-XFEM coupling framework and its application to polycrystal plasticity. International Journal of Plasticity, 127, 102647 (2020) |
[26] | FORGHANI, S. and KHAJI, N. An anisotropic multi-scale method for slipping dislocations. International Journal of Plasticity, 148, 103130 (2022) |
[27] | SHILKROT, L. E., MILLER, R. E., and CURTIN, W. A. Multi-scale plasticity modeling: coupled atomistics and discrete dislocation mechanics. Journal of the Mechanics and Physics of Solids, 52, 755–787 (2004) |
[28] | DEWALD, M. and CURTIN, W. A. Analysis and minimization of dislocation interactions with atomistic/continuum interfaces. Modelling and Simulation in Materials Science and Engineering, 14, 497–514 (2006) |
[29] | TALEBI, H., SILANI, M., and RABCZUK, T. Concurrent multi-scale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 80, 82–92 (2015) |
[30] | CURTIN, W. A. and MILLER, R. E. A perspective on atomistic-continuum multiscale modeling. Modelling and Simulation in Materials Science and Engineering, 25, 071004 (2017) |
[31] | SHILKROT, L. E., CURTIN, W. A., and MILLER, R. E. A coupled atomistic/continuum model of defects in solids. Journal of the Mechanics and Physics of Solids, 50, 2085–2106 (2002) |
[32] | CHO, J., JUNGE, T., MOLINARI, J. F., and ANCIAUX, G. Toward a 3D coupled atomistic and discrete dislocation dynamics simulation: dislocation core structures and Peierls stresses with several character angles in FCC aluminum. Advanced Modeling and Simulation in Engineering Sciences, 2, 1–17 (2015) |
[33] | ANCIAUX, G., JUNGE, T., HODAPP, M., CHO, J., MOLINARI, J. F., and CURTIN, W. A. The coupled atomistic/discrete-dislocation method in 3D part I: concept and algorithms. Journal of the Mechanics and Physics of Solids, 118, 152–171 (2018) |
[34] | HODAPP, M., ANCIAUX, G., MOLINARI, J. F., and CURTIN, W. A. Coupled atomistic/discrete dislocation method in 3D part II: validation of the method. Journal of the Mechanics and Physics of Solids, 119, 1–19 (2018) |
[35] | YIN, J., BARNETT, D. M., and CAI, W. Efficient computation of forces on dislocation segments in anisotropic elasticity. Modelling and Simulation in Materials Science and Engineering, 18, 1–14 (2010) |
[36] | PO, G., LAZAR, M., ADMAL, N. C., and GHONIEM, N. M. A non-singular theory of dislocations in anisotropic crystals. International Journal of Plasticity, 103, 1–22 (2017) |
[37] | JUNGE, T. Modelling Plasticity in Nanoscale Contact, Ph. D. dissertation, Lausanne, École Polytechnique Fédérale de Lausanne (2014) |
[38] | HULL, D. and BACON, D. J. Introduction to Dislocations, Butterworth-Heinemann, Oxford (2011) |
[39] | ZHANG, J., ZHANG, H., LI, Q., CHENG, L., YE, H., ZHENG, Y., and LU, J. The physical origin of observed repulsive forces between general dislocations and twin boundaries in FCC metals: an atom-continuum coupling study. Journal of Materials Science and Technology, 109, 221–227 (2022) |
[40] | BOLLMANN, W. Crystal Defects and Crystalline Interfaces, Springer-Verlag, Berlin (1970) |
[41] | HIRTH, J. P. and LOTHE, J. Theory of Dislocations, Krieger Publishing Company, Florida (1982) |
[42] | THOMAS, Y. On the stress-strain relations for cubic crystals. National Academy of Sciences, 55, 235–239 (1966) |
[43] | KNOWLES, K. M. and HOWIE, P. R. The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials. Journal of Elasticity, 120, 87–108 (2015) |
[44] | ERCOLESSI, F. and ADAMS, J. B. Interatomic potentials from first-principles calculations: the force-matching method. Europhysics Letters, 26, 583–588 (1994) |
[45] | SHENG, H. W., KRAMER, M. J., CADIEN, A., FUJITA, T., and CHEN, M. W. Highly optimized embedded-atom-method potentials for fourteen FCC metals. Physical Review B, 83, 134118 (2011) |
[46] | KODZHASPIROV, G. E., KITAEVA, D. A., PAZYLOV, S. T., and RUDAEV, Y. I. On anisotropy of mechanical properties of aluminum alloys under high temperature deformation. Materials Physics and Mechanics, 38, 69–75 (2018) |
[47] | BLASCHKE, D. N. and SZAJEWSKI, B. A. Line tension of a dislocation moving through an anisotropic crystal. Philosophical Magazine, 98, 2397–2424 (2018) |
[1] | Yunlong LI, Wei CAO. Research of influence of reduced-order boundary on accuracy and solution of interior points[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 111-124. |
[2] | M. H. YAS;N. MOLOUDI. Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(4): 439-464. |
[3] | Xiaofan GOU;Jian QIN. Analytic calculation of magnetic force between two current-carrying coils[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(4): 475-486. |
[4] | Jiao ZHANG;Guohua NIE. Method of reverberation ray matrix for static analysis of planar framed structures composed of anisotropic Timoshenko beam members[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 233-242. |
[5] | Xiao-dong LI;Min JIANG;Jun-hui GAO;Da-kai LIN;Li LIU;Xiao-yan LI. Recent advances of computational aeroacoustics[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(1): 131-140. |
[6] | 高芳;张晓波;傅景礼. Application of canonical coordinates for solving single-freedom constraint mechanical systems [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(8): 1029-1038. |
[7] | 黄卫立;蔡建乐. Conformal invariance for nonholonomic system of Chetaev’s type with variable mass[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1393-1402. |
[8] | 李双宝;张伟. Global bifurcations and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(9): 1115-1128. |
[9] | 李旺;宇波;王欣然;孙树瑜. Calculation of cell face velocity of non-staggered grid system[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(8): 991-1000. |
[10] | 黎爱兵;张立凤;臧增亮;张云. Iterative and adjusting method for computing stream function and velocity potential in limited domains and convergence analysis[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(6): 687-700. |
[11] | 张道祥 冯素晓 卢志明 刘宇陆. Application of differential constraint method to exact solution of second-grade fluid[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(4): 403-412. |
[12] | 胡杨凡;王彪. 压电压磁复合材料中二维散射问题的解析研究[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(12): 1535-1552 . |
[13] | 周红燕;朴大雄. 周期底地形上内波的Hamilton长波展开[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(6): 745-756 . |
[14] | 付东杰;陈海波;张培强. Improved non-singular local boundary integral equation method[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(8): 1093-1099 . |
[15] | 戈新生;陈立群. Optimal control of nonholonomic motion planning for a free-falling cat[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(5): 601-607 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||