| [1] |
OLNY, X. and BOUTIN, C. Acoustic wave propagation in double porosity media. The Journal of the Acoustical Society of America, 114(1), 73–89 (2003)
|
| [2] |
VENEGAS, R. and UMNOVA, O. Acoustical properties of double porosity granular materials. The Journal of the Acoustical Society of America, 130(5), 2765–2776 (2011)
|
| [3] |
VENEGAS, R. and BOUTIN, C. Acoustics of sorptive porous materials. Wave Motion, 68, 162–181 (2017)
|
| [4] |
VENEGAS, R., BOUTIN, C., and UMNOVA, O. Acoustics of multiscale sorptive porous materials. Physics of Fluids, 29(8), 082006 (2017)
|
| [5] |
VENEGAS, R. and BOUTIN, C. Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states. Journal of Sound and Vibration, 418, 221–239 (2018)
|
| [6] |
VENEGAS, R., ZIELIŃSKI, T. G., NÚNEZ, G., and BÉCOT, F. X. Acoustics of porous composites. Composites Part B: Engineering, 220, 109006 (2021)
|
| [7] |
VENEGAS, R. and BOUTIN, C. Acoustics of permeo-elastic materials. Journal of Fluid Mechanics, 828, 135–174 (2017)
|
| [8] |
BOUTIN, C. and VENEGAS, R. Pore-scale bending and membrane effects in permeo-elastic media. Mechanics of Materials, 145, 103362 (2020)
|
| [9] |
BOUTIN, C. and VENEGAS, R. Morphology influence on the acoustic properties of permeo-elastic media. Wave Motion, 115, 103080 (2022)
|
| [10] |
AURIAULT, J. L., BOUTIN, C., and GEINDREAU, C. Homogenization of Coupled Phenomena in Heterogeneous Media, ISTE Ltd and John Wiley & Sons, London and Hoboken, NJ, 1–473 (2009)
|
| [11] |
ARENAS, J. P., PARRA, C. C., REBOLLEDO, J., and VENEGAS, R. Granular pumice stone: a natural double-porosity sound-absorbing material. Buildings, 15(4), 557 (2025)
|
| [12] |
ZIELIŃSKI, T. G., DAUCHEZ, N., BOUTIN, T., LETURIA, M., WILKINSON, A., CHEVILLOTTE, F., BÉCOT, F. X., and VENEGAS, R. Taking advantage of a 3D printing imperfection for the development of sound-absorbing materials. Applied Acoustics, 197, 108941 (2022)
|
| [13] |
ALLARD, J. F. and ATALLA, N. Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd ed., John Wiley & Sons, Hoboken, NJ, 1–358 (2009)
|
| [14] |
AURIAULT, J. L., BORNE, L., and CHAMBON, R. Dynamics of porous saturated media, checking of the generalized law of Darcy. The Journal of the Acoustical Society of America, 77(5), 1641–1650 (1985)
|
| [15] |
JOHNSON, D. L., KOPLIK, J., and DASHEN, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176, 379–402 (1987)
|
| [16] |
LAFARGE, D., LEMARINIER, P., ALLARD, J. F., and TARNOW, V. Dynamic compressibility of air in porous structures at audible frequencies. The Journal of the Acoustical Society of America, 102(4), 1995–2006 (1997)
|
| [17] |
ZIELIŃSKI, T. G., VENEGAS, R., PERROT, C., ČERVENKA, M., CHEVILLOTTE, F., and ATTENBOROUGH, K. Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. Journal of Sound and Vibration, 483, 115441 (2020)
|
| [18] |
UMNOVA, O., ATTENBOROUGH, K., and LI, K. M. Cell model calculations of dynamic drag parameters in packings of spheres. The Journal of the Acoustical Society of America, 107(6), 3113–3119 (2000)
|
| [19] |
UMNOVA, O., TSIKLAURI, D., and VENEGAS, R. Effect of boundary slip on the acoustical properties of microfibrous materials. The Journal of the Acoustical Society of America, 126(4), 1850–1861 (2009)
|
| [20] |
TRINH, V. H., LANGLOIS, V., GUILLEMINOT, J., PERROT, C., KHIDAS, Y., and PITOIS, O. Tuning membrane content of sound absorbing cellular foams: fabrication, experimental evidence and multiscale numerical simulations. Materials and Design, 162, 345–361 (2019)
|
| [21] |
STINSON, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. The Journal of the Acoustical Society of America, 89(2), 550–558 (1991)
|
| [22] |
AURIAULT, J. L. and BOUTIN, C. Long wavelength inner-resonance cut-off frequencies in elastic composite materials. International Journal of Solids and Structures, 49(23-24), 3269–3281 (2012)
|
| [23] |
BOUTIN, C. Acoustics of porous media with inner resonators. The Journal of the Acoustical Society of America, 134(6), 4717–4729 (2013)
|
| [24] |
VENEGAS, R., NÚNEZ, G., BOUTIN, C., UMNOVA, O., and ZHANG, Q. Acoustic wave propagation in permeable lossy metamaterials. Physics of Fluids, 34(1), 017117 (2022)
|
| [25] |
ZHANG, J., HU, B., and WANG, S. Review and perspective on acoustic metamaterials: from fundamentals to applications. Applied Physics Letters, 123(1), 010502 (2023)
|
| [26] |
WANG, K., ZHOU, J., TAN, D., LI, Z., LIN, Q., and XU, D. A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 43, 1125–1144 (2022) https://doi.org/10.1007/s10483-022-2870-9
|
| [27] |
LIU, J., LI, J., and WU, Y. Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method. Applied Mathematics and Mechanics (English Edition), 45, 1807–1820 (2024) https://doi.org/10.1007/s10483-024-3167-8
|
| [28] |
HAN, D., JIA, Q., GAO, Y., JIN, Q., FANG, X., WEN, J., and YU, D. Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes. Applied Mathematics and Mechanics (English Edition), 45, 1821–1840 (2024) https://doi.org/10.1007/s10483-024-3166-8
|
| [29] |
DONG, X., WANG, S., WANG, A., WANG, L., ZHANG, Z., TIE, Y., LIN, Q., and SUN, Y. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial. Applied Mathematics and Mechanics (English Edition), 45, 1841–1856 (2024) https://doi.org/10.1007/s10483-024-3168-7
|
| [30] |
WANG, S., WANG, A., WU, Y., LI, X., SUN, Y., ZHANG, Z., DING, Q., AYALEW, G. D., MA, Y., and LIN, Q. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial. Applied Mathematics and Mechanics (English Edition), 45, 1261–1278 (2024) https://doi.org/10.1007/s10483-024-3156-8
|
| [31] |
JIA, Q., YU, D., HAN, D., and WEN, J. Lightweight multifunctional metamaterial with low-frequency vibroacoustic reduction and load-bearing performances. Applied Mathematics and Mechanics (English Edition), 46, 403–422 (2025) https://doi.org/10.1007/s10483-025-3231-6
|
| [32] |
LIU, Z., ZHANG, X., MAO, Y., ZHU, Y. Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734–1736 (2000)
|
| [33] |
FANG, N., XI, D., XU, J., AMBATI, M., SRITURAVANICH, W., SUN, C., and ZHANG, X. Ultrasonic metamaterials with negative modulus. Nature Materials, 5, 452–456 (2006)
|
| [34] |
KRYNKIN, A., UMNOVA, O., BOON CHONG, A. Y., TAHERZADEH, S., and ATTENBOROUGH, K. Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496–3506 (2010)
|
| [35] |
YANG, Z., MEI, J., YANG, M., CHAN, N. H., and SHENG, P. Membrane-type acoustic metamaterial with negative dynamic mass. Physical Review Letters, 101(20), 204301 (2008)
|
| [36] |
GAULON, C., PIERRE, J., DEREC, C., JAOUEN, L., BÉCOT, F. X., CHEVILLOTTE, F., ELIAS, F., DRENCKHAN, W., and LEROY, V. Acoustic absorption of solid foams with thin membranes. Applied Physics Letters, 112(26), 261904 (2018)
|
| [37] |
BONGARD, F., LISSEK, H., and MOSIG, J. R. Acoustic transmission line metamaterial with negative/zero/positive refractive index. Physical Review B, 82(9), 094306 (2010)
|
| [38] |
SEO, Y. M., PARK, J. J., LEE, S. H., PARK, C. M., KIM, C. K., and LEE, S. H. Acoustic metamaterial exhibiting four different sign combinations of density and modulus. Journal of Applied Physics, 111(2), 023504 (2012)
|
| [39] |
QUE, W., YANG, X., and ZHANG, W. Tunable low frequency band gaps and sound transmission loss of a lever-type metamaterial plate. Applied Mathematics and Mechanics (English Edition), 43, 1145–1158 (2022) https://doi.org/10.1007/s10483-022-2890-9
|
| [40] |
ARENAS, J. P., MARIN, V., and VENEGAS, R. Membrane sound absorber with a granular activated carbon infill. Applied Acoustics, 202, 109180 (2023)
|
| [41] |
ZHAO, H., WANG, Y., YU, D., YANG, H., ZHONG, J., WU, F., and WEN, J. A double porosity material for low frequency sound absorption. Composite Structures, 239, 111978 (2020)
|
| [42] |
ZHANG, W., LIU, X., and XIN, F. Normal incidence sound absorption of an acoustic labyrinthine metal-fibers-based porous metamaterial at high temperature. International Journal of Mechanical Sciences, 237, 107821 (2023)
|
| [43] |
LI, Y., YAN, J., and PENG, Y. Multiscale porous with coiled-up channel for low-frequency broadband sound absorption. International Journal of Mechanical Sciences, 232, 107622 (2022)
|
| [44] |
GAO, N., TANG, L., DENG, J., LU, K., HOU, H., and CHEN, K. Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge. Applied Acoustics, 175, 107845 (2021)
|
| [45] |
WANG, S., XIAO, Y., GU, J., HU, C., ZHANG, H., and WEN, J. Double-panel metastructure lined with porous material for broadband low-frequency sound insulation. Applied Acoustics, 207, 109332 (2023)
|