[1] H. Wang and R. Skalak, Viscous flow in a cylindrical tube containing a line of sphericalparticles, J. Fluid Mech., 38 (1986), 75.
[2] W. A. Hyman and R. Skalak, Non-Newtonian behavior of a suspension of liquid dropsin tube flow, AIChE J., 181 (1972), 149-160.
[3] W. A. Hyman and R. Skalak, Viscous flow of a suspension of liquid dropes in acylindrical tube, Appl. Sci. Res., 26 (1972), 27-52.
[4] C. Pozrikidis, The buoyancy-driven motion of a train of viscous drops within acylindrical tube, J. Fluid Mech., 237 (1992), 627-648.
[5] H. Happel and H. Brenner, Low Reynolde Number Hydrodynamics, NoordhoofInternational Pub., Leyden (1973).
[6] G. K. Youngren and A. Acrivos, Stokes flow past a particle of arbitrary shape: anumerical method of solution, J. Fluid Mech., 69 (1975), 377-403.
[7] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow,Cambridge University Press (1992).
[8] H. Tozeren, Boundary integral equation method for some stokes now problem, Intl. J.Numer. Mech. Fluids, 4 (1984), 159-170.
[9] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover (1972).
[10] M. J. Lighthill, An introduction to Fourier Analysis and Generalized Functions, CambridgeUniversity Press (1958).
[11] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous incompressible Flow, Gordon& Breach (1963).
[12] Chen Jinnan, Z. Dagan and C. Maldarelli, The axisymmetric thermocapillary motion ofa particle in a tube, J. Fluid Mech., 233 (1991), 405-437. |