[1] Grimshaw R H J. Slowly varying solitary waves[J]. Proc Roy Soc Lon A, 1979,368(1734):359-375.
[2] Chan W L, ZHANG Xiao. Symmetries, conservation-laws and Hamiltonian structures of the nonisospectral and variable-coefficient KdV and mKdV equations[J]. J Phys A, 1995,28(2):407-419.
[3] TIAN Chou. Symmetries and a hierarchy of the general KdV equation[J] . J Phys A, 1987,20 (2):359-366.
[4] WANG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A,1995,199(3/4): 169-172.
[5] WANG Ming-liang, ZHOU Yu-bin, LI Zhi-bin. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys Lett A, 1996,216(1/5):67-75.
[6] YANG Lei, ZHU Zheng-gang, WANG Ying-hai. Exact solutions of nonlinear equations[J]. Phys Lett A, 1999,260(1/2):55-59.
[7] YANG Lei, LIU Jiang, YANG Kong-qing. Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature[J]. Phys Lett A, 2001,278(5): 267-270.
[8] Parkes E J, Duffy B R. Travelling solitary wave solutions to a compound KdV-Burgers equation [J]. Phys Lett A, 1997,229(4):217-220.
[9] FAN En-gui. Extended tanh-function method and its applications to nonlinear equations[J]. Phys Lett A, 2000,277(45):212-218.
[10] Hirota R. Exact N-solutions of the wave equation of long waves in shallow water and in nonlinear lattices[J]. J Math Phys, 1973,14(7):810-814.
[11] Kudryashov N A. Exact solutions of the generalized Kuramoto-Sivashinsky equation[J]. Phys Lett A, 1990,147(5/6):287-291.
[12] Otwinowski M, Paul R, Laidlaw W G. Exact travelling wave solutions of a class of nonlinear diffusion equations by reduction to a quadrature[J]. Phys Lett A, 1988,128(9):483-487.
[13] LIU Shi-kuo,FU Zun-tao,LIU Shi-da, et al. A simple fast mehod in finding particular solutions of some nonlinear PDE[J]. Appl Math Mech (English Ed) ,2001,22,326-331.
[14] YAN Chun-tao. A simple transformation for nonlinear waves [J]. Phys Lett A, 1996,224 (1/2):77-84.
[15] ZHANG Jie-fang, WU Feng-min. Simple soliton solution method for the (2 + 1)dimensional long disperive equation[J] . Chinese Physics, 1999,8(5):326-331.
[16] Porubov A V. Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer[J]. Phys Lett A, 1996,221(6):391-394.
[17] Porubov A V, Velarde M G. Exact periodic solutions of the complex Ginzburg-Landau equation[J].J Math Phys, 1999,40(2):884-896.
[18] Porubov A V, Parker D F. Some general periodic solutions to coupled nonlinear Schrodinger equations[J]. Wave Motion, 1999,29(2):97-108.
[19] LIU Shi-kuo,FU Zun-tao,LIU Shi-da, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Phys Lett A ,2001,289(1/2):69-74.
[20] Nirmala N, Vedan M J, Baby B V. Auto-Backland transformation, Lax pairs, Painleve property of a variable coefficient Korteweg-de Vries equation[J]. J Math Phys, 1986,27(10):2640-2648.
[21] Oevel W H, Steeb W H. Painleve analysis for a time-dependent Kadomtsev-Petviashvili equation [J]. Phys A, 1984,103(2):239-242.
[22] Steeb W H,Spicker B M. Kadomtsev-Petviashvili equation with explicit x and t dependence[J].Phys Rev A, 1985,31(3): 1952-1960.
[23] ZHU Zuo-nong. Lax pairs, Backland transformation, solitary wave solution and infinite conservation laws of the general KP equation and MKP equation with variable coefficients [J]. Phys Lett A,1993,180(6):409-412.
[24] ZHU Zuo-nong. Painleve property, Backland transformation, Lax pairs and soliton-like solutions for a variable coefficient KP equation[J]. Phys Lett A, 1993,182(2/3):277-281.
[25] Hong W,Jung Y D. Auto-Backland transformation and analytic solutions for general variable-coefficient KdV equation[J]. Phys Lett A, 1999,257(3/4): 149-152.
[26] WANG Ming-liang, WAMG Yue-ming. A new Baickland transformation and multi-solitons to the KdV equations with general variable coefficients[J]. Phys Lett A, 2001,287(3/4):211-216. |